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Ny SUMMARY

ﬁ; A review has been undertaken of the available datea on the subject of the drag
g% of excrescences on aircraft surfaces. Information from this review has been
; summarized and resented in a way that is readily usable for prediction and
design purposes. The basic characteristics of boundary layers are discussed

¥
b1
% and, where possible, the drag of excrescences is related to those charac-
v teristics,

gy
* -

In particular, because the size of many types of surface imperfection is
small in comparison with boundary layer thicknesses, the drag of such im-
perfections can be correlated in terms of the properties cf inner regions of
the boundary layer. Several previously published analyses of this type are
highlighted and, where possible, extensions to other data sources or other
types of excrescence are presented. The practical problems of applying these
data in the varying velocity gradients existing on aircraft surfaces are
treated and one section is devoted to the drag of auxiliary air inlet and

exit openings., Gaps in existing data which offer opportunities for research
effort are pointed out.
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NOMERCLATURE

pipe radius

Constants in "law of the wall" velocity distribution equation
cross section area of air inlet or exit

aspect ratio of air inlet or exit
chord

wing drag coefficient, D/qo Sw
excrescence drag coefficient, D/qe fe
excrescence drag coefficient, D/g fe

excrescence drag coefficient, D/qe Sp

drag coefficient of excrescence having height equal to boundary layer
thickness, D/qo fe

Grag coefficient of cylinder of infinite length
componenct drag coefficient, n/q, £

e

local skin friction coefficient, 21 H/ py V°2

2

local skin friction coefficient, 2 L /I)w u o

skin friction coefficient of complete body
thrust coefficient, thrust/qu

drag

drag increase due to excrescence

diameter of excrescence

projected frontal area of excrescence
roughness Reynolds number, Uy h/v

boundary layer shape factor, 6*/0
boundary layer shape factox, ( §- §*)/¢
loss of total pressure

height of discrete roughness; mean enthalpy per unit mass

height of distributed roughness

]

L7 emanat b it 1 i




B L

«quivalent gand grain roughness
maximum roughness height which will not cause transition

minimum roughness height which will resgult in transition
behind roughness

von Karman constant, 0,.4-0.41

length proportional to mixing length

Mach number

drag magnification factor

momentum magnification factor

inlet .nass flow per unit area, ﬂiVi

free stream mass flow per unit area, P Ve
dynamic pressure

free stream dynamic pressure

local dynamic pressire at edge of boundary layer
mean dynamic pressure from surface to height of excrescence

radius of curvature, or recovery factor

T SR ST ) P TV ST ATy

immediately

Reynolds nuwber (subscript indicates characteristic length) C-chord,

# -momentum thickness, x-~length from stagnation point

temperature (with following subscripts) W-wall e-edge of boundary layer

planform area of excrescence

wing planform area

velocity component in stieamwise direction
local veloc.ty at edge of boundary layer
local velocity at heignht of roughness element
friction velocity, (t w//!w)l/2
u/u,

fluctuating component of longitudinal velocity

mean longitudinal velocity
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! Vo vndisturbed frecstream velocity
: vy inle. velocity
! :
i s V. outlet velocity
! ;
We weight flow from exit
’ X surface lenath rom stagnation point
y hei1ght above surface
Ny y+ Yy Uy /v
v, thickness of viscous sublayer
: a inclination of cylinder from flow Girection
i
3 . e
t Y intermittency factor or ratio of specific heats
: d boundary layer thickness, alsc ramp angle, flap angle
‘ * . . d
) displacement thickness = fo (l-U/Ue) Ay
4 momentum thickness, also submerged insec inclination angle, exhaust flow
angle relative to free stream
N Ju viacosity
v kinematic viscosity,u/:
E g p mass density
.
4 § 1, laminar shear stress, pndu/dy
* N
§ : S
; ;, Ty turbulent eddy shear stress, -pu'v’
{
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§ g T, wall shear stress
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1. INTRODUCTION

In the highly competitive field of aircraft development and procurement, acrod-
ynamic performance is frequently the outstanding factor in final decisions, It is very
important therefore for aerodynamic designers, and for technical evaluators, to be able
to predict aircraft drag with the best possible precision, Relatively small advantages
in speed or in fuel consumption can contribute significantly to operational efficiency
of transport aircraft, and for combat aircraft, small margins in performance may be
ultimately decisive. In addition to these basic considerations, conservation of fuel is
becoming a more and more important independent criterion in the design of all types of
aircraft.

Surface imperfections have long been recognized as a drag source and numerous
studies have b2en devoted to quantifying this drag problem, These studies have been
approached in various ways in the course of aerodynamic development with the result that
information on this subject exists in many widely diverse forms. Reference 1.1, first
published in 1951, contains a chapter on drag due to surface irregularities which is an
excellent collection of data available (in later editions) up to about 1955. Since that
time, a greater und:rstanding of boundary layer phenomena and of roughness drag mecha-
nisms has been developed, and through that understanding substantive generalizations
have been made possible in a number of cases. Later exparimental work has also been
dedicated to Mach number and Reynolds number regimes which are pertinent to modern air-
craft. Recent useful, if brief, reviews are provided in References 1,5 and 1.6.

When proper attention is paid to design and manufacturing tolerances, the roughness
drag of transport aircraft can be reduced to rather small (but still siyusificant)
values. Drag attributable to this source on the Lockheed C-5 airplane is estimated to
be approximately 3-1/2% of cruise drag (Reference 1.2). At the time the C-5 was de-
signed, it was felt that the smoothness standards accepted represented a rational
compromise of fabrication costs versus performance benefits., As fuel costs continue to
rigse, a reassessment of this question might justify more stringent specifications, On
smaller aircraft the same machining and assembly tolerances of course result in greater
relative roughness, and for fighter aircraft, larger ratios cf wetted area to wing area
cause a further escalation.

Reference 1,3 presents a detailed review of three fighter aircraft ghowing that
roughness drag varied from about J10% to 20% of total drag at subsonic speeds. When
considered in comparison with other configuration changes which could cause the same
drag increment, this roughness drag assumes rvather large significance. It is also
apparent that, if all other factors were constant, a fighter aivcraft with roughness at
the low end of this range would enjoy a substantial advantage over an adversary at the
high end.

In a paper presented in 1967 (Reference 1,4), Haines reviewed the drag of a number
of transport aircrafc, A breakdown of drag sources on those aircraft indicates contri-
butions from surface imperfections and excrescences varying from 15% to 24-1/2% of
profile drag which probably represents 8% to 12% of cruise drag. A detailed analysis of
the drag effects of excrescences cn the VFW 614 aircraft (a small short range aircraft)
in Reference 1,7 leads to a similar penalty of 22% of the profile drag. References 1.2,
1.3, and 1.4 each present details on the specific roughness items which contribute to
this extraneous drag. The outstanding indication from these details, however, is the
fact that the problem is all-pervasive. Roughness drag can be minimized only by
aggressive attention to details of the surface condition of all parts of the aircraft,
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The objective of this work is, therefore, to provide up to date informaticon on the
drag of surface imperfections. Modern boundary layer theory is veviewed to highlight
the phenomena underlying drag duce to surface roughnesses to provide an understanding ot
the mechanisms ot such drag increases. Tne authors have atterpted to collect the best

available methods for prediction of rvoughness drag increments in the light of that basic
understanding.

1t is ecxpected that this collection ot information will be of assistance to air-
craft designers who must assess the drag resulting from surface imperfections and make
decisions on cost effective design and manufacturing standards. Finally, it is hoped
that the review presented here will highlight those ateas where data are meager or lavk-
ing and will therefore provide the incentive for further research and davelopment.
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2. BASIC CHARACTERISTICS OF BOUNDARY LAY{ZRS

£
2.1 Lanminar & Turbulent Boundary Layers on Smooth Surfaces

2,1.1 Introductory Remarks

In this section we shall briefly review the main features of boundary layers on
smooth surfaces and the associated theories since they are an essential preliminary to
the consideration of the effects of roughness. We shali only present the subject in
summary form since it is a vast one and is well covered in existing text books (see for
example References 2.1, 2,2, 2.3, 2.4). We shall largely confine the discussion to
two-dimensional incompressible flow but shall brielly indicate the extension of the
topics discussed to three-dimensional and compressible flow where convenient,

In most engineering situations involving a body immersed in a fluid moving xelative
to it the Reynolds number based on the relative velocity and a typical body length is
very large compared with unity. In such cases we can identify a thin layer of fluid
adjacent to the body surface in which the velocity relative to the body changes rapidly
with distance normal to the surface from zero at the surface (the "no-slip condition")
to the local freestroam velocity at the outer edge of the layer. The layer is therefore
a region of large rate of shear and in consequence viscous stresses can be important
within it, but outside the layer these stresses are generally negligible and the flow
behaves as if it were inviscid, This layer is known as the boundary layer,

Over some forward part of the body we find that the flow in the boundary layer is
laminar, i.e, the fluid particles follow smooth paths. Then at some stage, depending on
the Fpressure distcibution, the level of free stream disturbances and the surface
condition, the flow in the boundary layer mcre or less rapidly changes to turbulent and
the process of this change is called transition, 1In turbulent flow the fluid particles
experience random variations in velocity magnitude and directiorn additional to their
mean motion and typically the fluctuations in velocity magnitude van be of the order of
108 of the mean velocity. These fluctuations introduce momentum transport terms in the
equations of motion additional to and jencrally much larger than those associated
directly with viscosity and these transport terms can be regarded as equivalent to
additional stresses usually referred to as Reynolds stresses or eddy stresses. Similar

eddy transport terms arise in the energy equation.

If x denotes the distance from the forward stagnation point along a body surface in
the streamwise direction and 8 denotes the boundary layer thickness then for a laminax
boundary layer d/x (1Rx_1/2, where Rx = Vo XA Vo being the undisturbed main stream
velocity and v the kinematic viscosity. If v denotes the shear stress at the surface
(or skin friction) then we define the skin friction coefficient as Cy = th/pvoz, where

“1/2 ¢or a laminar boundary

n

p is the fluid density, and we find that likewise Ce @ Rx
layer. With the boundary layer turbulent we find that to a good approximation d/x aRx-
ani cg @ Rx-n, where n is about 1/5. Thus, for a flat plate at zero incidence in a uni-
form stream and hence with zero pressure gradient:-

= 0.664 R." /%, with the houndary layer laminar, and

o/x =~ SRc"M2 44 cg
-1/5, with the boundary layer turbulent. These figures

d/x =0.37 8,7 and ¢, =0.06 R,
illustrate how thin the boundary layer is in most practical applications whrere the

characteristic Reynolds number is rarely less than 104 and can reach values of the order
9
of 107.



The thinness of the boundary layer and the associated high rate of shear are used
to justify approximations to the ¢guations of motion of a viscous fluid (the
Navier-Stokes equations) as well as the equation of energy which lead to the so-called
boundary layer equations. In particular velocity and temperature gradients with respect

to x are treated as small compared with the gradients with respect to y, the distance
normal te the surface, and this is vreflected in the relative magnitudes of the
corresponding stresses and heat conduction terms. A consequence is that the pressure
change across the boundary layer can generally be neglected, It is also inferred that
the thin bcundary layer displaces the external “inviscid" flow outwards by a small
amocunt {the so-called "displacement thicknesc®) and hence slightly displaces the

effective boundary of the external flow from the body surface. However, for many
purposes this weak interaction between boundary layer flow and external flow can be
ignored.

The above discussion relates strictly to unseparated boundary layers. But in the
presence of a strong enough streamwise rise in pressure the innermost regions of the
boundary layer can be so retarded as to reverse in flow direction beyond some point and
then the boundary layer develops into a separated shear layer moving away from the
surface over an inner region of upstream moving flow, The boundary layer is then said
to be separated, and if the external flow is not time-dependent the point at the
surface where the gradient of the streamwise velocity component (u) with respect to y is
zero is referred to as the separation point. With a separating boundary layer the

interaction between it and the external flow can be strong, since the separated boundary
layer can move a considerable distance from the body and s=o profoundly modify the
effective shape of the boundary which determines the external flow. Thus, flow
separation from a wing at high enough incidence is the cause of the stali and is
associated with a marked reduction of 1lift; an increaze of drag and development oOf
pressure fluctuations and buffeting. The reversed flow plus the ir. zr region of the
separated shear layer comprise a relatively large scale eddy which tends to be unstable
and is convected downstream whilst it breaks up into smaller eddies, meanwhile a new
eddy forms from the wing surface to take its place and so on. HKence the as3ociated
pressure fluctuations and buffeting.

The streamwise extent of the region over which the transition from 1laminar to
turbulent flow takes place depends strongly on the Reynolds number, At Reynolds numbers
less than about 106 in terms of body length the transition region can be of significant

6

extent, but for Reynolds numbers greater than about 2 x 10 it is sufficiently small to

be regarded as a point (or line in three dimensions) referred to as the transition point

{or line). Laminar and turbulent boundary layers have very different characteristics.
The turbulent bcundary layer is fuller in velocity profile, grows at a faster rate, has
a greater frictional stress at the surface and is much less easily caused to separate
than the laminar boundary layer. The transition process is a manifestation of the
tendency to instability of the laminar boundary layer and this tendency is enhanced not
only by increase of Reynolds number but by positive (adverse) pressure gradieats and
surface imperfections,

The main etfects of such imperfections and excrescences in general on drag are
threefold, Firstly, they can cause transition to occur upstream of its position on a
smocth surface, and to that extent they increase the drag because of the greater
streamwise extent of turbuler: boundary layer flow. Secondly, local flow separations
may occur from the exXcresenc2s which involve increased momentum losses and therefore
increased drag. If the excrescences are well imuersed 1in the boundary layers the eddies
associated with these separa*tions are small, being of scale comparable to the
excrescence size and they are then readily abksorbed into the general structure of the

boundary layer turbulence. If the excrescences are large in relation tc the boundary




£
F

layer then they will result in correspondingly large eddying wahes which can strongly
; interact with the external flow. Thirdly, under conditions of strong, positive pressure
gradients surface imperfections and excrescences even when well immersed in the boundary
1 N layer, may by virtue of their effect on the boundary layer trigger an earlier flow
separation from the surface than would occur if the surface were smooth.

2.1.2 Boundary Layer Velocity Profiles and Basic Skin Priction Laws

For the attached laminar boundary layer on a surface with prescribed pressure
distribution the velocity distribution at any streamwise station can be determined as
accurately as one wishes from the boundary layer equations and prescribed boundary
conditions (see Section 2.1,3) since they reguire no further assumptions for their
solution, The velocity profile on a flat plate in a uniform pressure distribution in
incompressible flow is illustrated in Figure 2.1 where u/ue is plotted as a function of

{ = y/2 m u, is the free stream velocity at the outer edge of the boundary
layer, It can be approximately fitted by various formulae of which the simplest
offering a tolerably good fit in terms of y/§ is

. 1

%a=sm i——g—), R 2(n
where § 1is the boundary layer thickness. The thickness § cannot be Jdefined exactly
f since strictly the boundary layer extends to infinity in the y direction, but in
practice at all but 3small distances depending on the Reynolds number the difference in
velocity (ue - u) is small enough to be neglected. Thus we may choose to define & as
the value of y for which u = 0,995 u,, say; this provides a unigue definition and & |is
] then small enough in relation to x for the boundary layer assumptions to be seen to be
3 valid for Reynolds numbers of normal engincering interest.

¢

i 0

g 0 1.0 2.0 3.0
i u iy 1/2

k ¢t (=)o

% 2 vx?!  ; x

&

Figure 2,1, Velocity Distribution in Luminar Beundary Layer on Flat Plafe at Zero
Incidence (Blasius Profile)

In the presence of a negative (favourable) pressure gradient the velocity profile
- is fuller than that for zero pressure gradient, whilst with a positive (adverse)
pressure gradient the profile is less full and develops a puint of inflection. We have
already noted that in a sufficiently strong adverse pressure gradient, there can dev: lop
a reversal with separation of the boundary layer (see Figure 2.2).
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PRESSURE GRADIENT

NEGATIVE (FAVORABLE}
ZEROQ

POSITIVE, SEPARATION
IMMINENT

STRONGLY POSITIVE,
BL IS SEPARATED

0 0.2 0.4 0.6 0.8 1.0
y/'8

C No>

Figure 2,2, Typical Velocity Distributions for Lominar Boundary Layer in Negative
Zero and Positive Pressure Gradients

A typical turbulent boundary layer profile is much fuller than a laminar boundary
layer profile and conseguently has a higher shear stress at the surface. This is
because the vigorous mixing associated with the turbulence helps to even out the
velocity distrlbution across the boundary layer. Figure 2.3 shows a typical profile for
a turbulent boundary layer on a flat plate in zero pressure gradient in incompressible
flow compared with that for a laminar boundary layer. Adverse and favourable pressure
gradients change the profile in the same sense as for a laminar boundary layer but to a
much smaller degree, and it generally requires a much greater pressure rise to cause a
turbulent boundary layer to separate.

TURBULENT
0.8
u_ 0.8 LAMINAR
ue
0.4}
0.2}
07".2 0.4 0.6 0.8 1.0
v/

Figure 2,.3. Typical Velocity Distributions for Laminar and Turbulent Boundary
Layers on a Flat Plate at Zero Incidence

An empirically determined overall approximation to a turbulent boundary layer
velocity profile in incompressible flow in zero or small pressure gradients is the
so~called power law:-

- G2 Yn

Ve

2(2)
v

where up = \/tw/p*’ (the friction velocity) and C; is a constant. The number n is
usually taken as 7 for a range of Reynolds numbers in terms of x from about 5 x 105 to
107, with C, = 8.74. For higher Reynolds numbers in the range 10% to 10% a4 closer fit

to experimental data is given by n = 9 with ¢ = 10.6., From 2(2) it follows that
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From equation 2(2) and the use of the mcaeuum sintegrai: equation (see Seciion
2.1.3) cne can readily deduce a number of useful ewpirical relations between & , Cye
CF' Rx' Rc ard R@ for the basic case of a flat plate at zero incidence in incompressible
flow., Here CF is the overall skin friction coefficient for one face of a plate of chord

c (i.e, Cp = l/c_fo6 Cg. dx),
R, = u,c/, Ry = “ea/v' and # is the momentum thickness:-

v u
e‘fo *u:("u—e)d)'

These relations are

8/x=0.37R"1/5 , ¢ =0.0592R"1/5 , C_=0.,074r"1/5
X f x F <

forn=7
¢, =0.02 Re']/4,

’ : 2 (4)
and  &/x=0.27 Rx"/6 , ¢ =0.0375 Rx"/" , €, =0.0450 RC'V“

farn=9
e =0.0176 8™/,

Somewhat closer and more general approximations to experimental data for the skin
friction coefficients are provided by the Prandtl-Schlichting semi-empirical relations:-—

= - -2.3
% (ZIOQIORX 0.65)

- -2.58, 2
Cp =0.455 (lagwkc) 6)

These relations are compared with the corresponding ones for a laminat boundary

layer in Figure 2.4 & 2.5.
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Figure 2.5. C. - Rc Relations for Laminar and Turbulent Boundary Layers on o Smooth

Flat Plate at Zero Incidence

A detailed examination ot the structi.re of the turbulent boundary layer on a smoocth
surface reveals that it can be conveniently regarded as made up of three regions,
Adjacent the surface there is the viscous sub-layer in which the turbulent fluctuations

are relatively small and the dominant shear stress is the purely viscous one, 1, =H3u/dy,
which is generally regarded as constant across the sub-layer. This layer is very thin,
its thickness y, is given by y, u;/v = 0(10) and is of the order of one hundredth of the
boundary layer thickness. &bove the sub-layer there is an inner region of the boundary
layer about 0.4 in thickness in which the turbulence intensity is large, the flow is
continuously turbulent and the dominant shear stress is the Reynolds stress,

e =
-pu'v', Here, dashes denote the turbulence velocity components, and a bar denotes a
time mean. A wide spectrum of eddy sizes and frequencies are present in this region,
From about 0.4 8 upwards there is an outer region characterised by large low freguency
eddies. The outer edge of the boundary layer therefore presents a convoluted appearance
at any instant and the smooth curve with which it is normally represented is really a
time mean. The turbulence at any point in this outer region is not continucus but
intermittent reflecting the passage of large eddies with intervals of laminar flow
between them. We speak of an intermittency factor ¥ , which is the fraction of time
that hot wire measurementgs at a point show the flow there to be turbulent, and
decreases from 1.0 at about y = 0.48 to zero at about y = 1.28 (see Figure 2,6 from
Ref rence 2.5). The Reynolds stress continues to be far greater than the viscous stress
in the outer region just as it is in the inner region, It should be emphasised that the
three regions merge into each other, the boundaries between them cannot be identified

with any precision and can change with changes in external pressure distributicn or
surface condition.
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Figure 2,6, Intermittency Factor Distribution in Turbulent Boundary Layer on Smooth
Flat Plate at Zero Incidence (Kiebaroff)

There is an alternative if complementary way of locking at the structure of the
turbulent boundary layer. Within the lowest one-tenth or so of the boundary layer the
so-called law of the wall holds. There it is argued that the velocity distribution is
determined solely by the distance y from the wall, the velocity u, (since the shear
stress is practically constant over this region) and the kinematic viscosity v , The
presence of the wall therefore dominates the flow in this region. Dimensional reasoning
then leads to the relation

MooV,
U, ‘;“

. + + + +
ot v =f(y), where v =2, y =2V
ur >

2 (6)

and f denotes some function to be determined, This is the law of the wall in its most
general form. In the viscous sub-layer where t = uau/3y = Tt the law of the wall
takes the particular simple form

+ + 20

u =y

To determine the form of the function £ in the rest of the law of the wall region
we can appcal to & number of different turbulence models and associated processes of
reasoning of which the simplest if crudest is based on the concept of the turbulence
mixing length, analogous to the mean free path of molecular motion. Thus, it is
postulated that there is an average Jength normal to the wall over which a fluid
particle moves retaining its initial mean momentum and then it mixes with its
surrounding flow. The mixing length is assumed small compared with the boundary layer
thickness, This simple picture does not reflect in any realistic sense the complexities
of turbulent shear flow but it yields semi-empirical relations of proven practical
value. Tt readily leads t5 the result

Ay 2(8

where ¢ is a length proportional to thz mixing length. This can be written

Ty TH, B 209
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where re ™ ﬂfz Iau/ayl can be regarded as an effective eddy viscosity coefficient.
It is however a variable of the mean flow unlike the ordinary viscosity coefficient p .

Two further assumptions are made. Firstly, that in the region of the law of the
wall (other than in the viscous sub-layer)

f=Ky ) 2 (10)

where K is a constant, the Von Karman constant, tound experimentally to be 0.4 - 0.41;

secondly that in this region T, = T, It can then be readily deduced that

u =,"fl In y +const
K

1f, proceeding fturther, we take account of the presence of the viscous sub-layer, we

arrive at

In y++B 2 (1

where B is a constant. This is the so-called logarithmic form of the law of the wall.

A different approach due to Squire (Reference 2.6) provides a realistic merging
with the viscous suh-layer. He started with the eddv viscosity assumption of equnation

2(9) and on dimensional grounds inferred that
W, =const Pu, (y-yo),

where Yo is related to the viscous sub-layer thickness, since it defines the lower
boundary of the law of the wall region in which the eddy stress is dominant. Further,
on dimensional grounds it is argued that

¥ = const V/u,

The total shear stress

= = =7
TRT T, 01'+u)2|u/3>' w

from which the law of the wall follows in the form

——\J__+_|€] +8, foryy, 2(i2)
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Values of K and B are variously quoted in the experimental literature, favoured values
of K are 0.4 and 0.41 whilst corresponding values of B of 5.5 and 5 are often quoted.
These differing values in part reflect experimental ervors but there may be some small
dependence of K and B on Reynolds number, With K = 0,4 and B = 5.5, equation 2(12)
gives continuity for uoat Y, With the viscous sub-layer (equation 2(7)) if u,yo/va 7.8,
whilst with K = 0,41 and B = 5,0, continuity follows if utyo/v = 7.17. Equation 2(12)
and equation 2(1l1) are in good agreement for y+ greater than abcout 30, whilst for values
of y+ between about 7 and 30 equation 2(12) is in good agreement with measurements of
Reichardt in the buffer region between the viscous sub-layer where 1, is the dominant
part of v and the fully turbulent part of the law of the wall region where T is
dominant.

An alternative approach to encompass the viscous sub-layer is that adopted by Van
Driest (Reference 2.7) who suggested that the relation f = Ky should be changed to

£ =Ky [l - oxp. (-y+/A°)], 2 (13)

the additional factor F = {1 - exp. (-y+/Ao)], is presumed to account for the damping
effect on the turbulence as the wall is approached. Van Driest found the constant Ao
empirically to be 26, although the value 25 1is sometimes gquoted, The vtesulting
expression for u’ is somewhat more canplex than 2(1ll) but tends to it for y+ greater
than about 100 and to the viscous sub-layer relation (equation 2(7)) for small y+.

It will be clear from 2(ll) that a plot of ut againstg lny+ (or logloy+) will take
the form of a straight line with slope 1/K (or 1/K1lnl0) for the law of the wall region.
with a unifeorm external flow (zerc pressures goeadient) this siraight line extends for
values of y+ from about 30 to about 500 depending on the Reynolds number (see Figure
2.7).

Consistent with the argument that the law of the wall region is independent of the
external flow conditions it is found that for an attached turbulent boundary layer there
is always a region in which the law of the wall holds whatever the cxternal pressure
distribution. However, the relative extent of that region diminishes as the external
pressure distribution becumes increasingly adverse and for a boundary layer approaching
separation it becomes difficult to identify a law of the wall region with any confidence

(see Figure 2.7).
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Figure 2,7, Typical Plots of u4 - log '0y+ for Different Pressure Gradients on o
Smouth Surface

ks cA..‘;—Mmmunﬂ‘:\.;_.\_ﬂmﬂnj

e e



Outside the law of the wall region we have the renainder of the boundary layer
{some 90% of it in thickness). 1t is argued that in this region viscosity plays no
direct part and that the velocity defect relative to the external velocity, g T U, is
solely a function of u;, y, 8 and some parameter characterising the streamwise pressure
distribution. With a uniform external flow it is therefore inferred that

Yo "M L {y/0) 2 (14)

Ve

where £ is a fanction to be determined experimentally. Egquation 2{14) is well supported
by experimental data and the function f deduced by Coles (Reference 2.8) is illustrated
in Figure 2.8. Equation 2(14) is referred to as the velocity defect relation.

A self-preserving, or equilibrium,; turbulent boundary layer is defined as one where
the velocity defect ratio, (ue-u)/ut , 1s the same function of y/§ for all x. From
2(14) it follecws that the case of uniform external flow offers one example of such a
boundary layer, Clauser {Reference 2.9) introduced the parameter

d o« -y
o __fm (u_e_:g) d,/fo (‘i,_u_T_) dy 2 (15)

o\ vy

Y
which is & constant for self-preserving boundary layers and is related to H = /6, where

. 8 s
3" is the displacement thickness =j (1 - Gh)dy, by the relation
0 e

G- g_-{_‘?‘ngg 2 (16)
Ur

Clauser (Reference 2,10) also demonstrated that boundary layers which were very closc to
self-~preserving resulted when the pressure gradient parameter

B =2 %% 2 (17)
P w
is constant.
12 I
10 ‘\
u -y 9 KS
e
Vr
4 .
2 \\
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/6

Figure 2.8, Velocity Defect Relation for Smooth Flat Plate at Zero Incidence as Derived by Coles
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Coles (Reference 2,11) proposed on the basis of his analysis of a considerable body of
data for turbulent boundary layers in non-uniform external pressure distributions that

Tyt 4B +“-'(_(’9 wiy/8) 2 (18)

We see that the third term on the right describes the deviation with y of the velocity
profile from the law of the wall. The function w(y/§) is such that w(0) =~ 0 and w(l) = 2
and it is very similar to the normalised velocity distribution typical of a half wake.
Eguation 2(18) is thernfore generally referred to as the law of the wake, The basic
concept is that away from the wall the boundary layer tends to develoo as if it were
part of a wake but it is modified by the presence of the wall. The function w(y/§ ) was
determined empirically by Coles but a close fit is

wp/t) =2 Sin? ( %) =1 - Cos (F) 209

Putting y = § in 2(18) it follows that

,
b

ﬂ(x)=%|:_u.° SYLLI ] 2 (20)
v, K

whece 5% = 5 ur /v . so that ]I (x) can be determined at any statjion x given u, and

$. We can regard JII(x) as a scaling factor determined by the external pressure distri-

bution,

It can be shown that JI(x) is a function of the Clauser parameter G so that it is
constant for self-preservirg boundary layers. With zero pressure gradient I] == 0,55
for values of Ry greater than about 5000.

Reverting to the law of the wall region we note that if we multiply both sides of
2(11) by u, /ue we get

If we now write the local skin friction coefficient as
2 2
=2T =
Crq = 2 W/nue 2 e /ue)

or v, = e/ V2

then it follows thut
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Hence, a family of curves can be plotted of u/ue against ln(uey/v) each corresponding to
a gpecified value of Cfa* Once plotted, such a chart can be compared with measurements
made in the law of the wall region of u/ue as a function of uey/v and the corresponding
value of the skin friction coefficient Cge Can be deduced. This method of determining
Cfe is referred to as the Clauser plot methed since Clauser first suggested it
(Reference 2,9),

We can use eguation 2(9) to determine, from reasurements for which T, 1s known,

t
the distribution of the eddy viscosity K, 8across the boundary layer. It is found to

rise to a maximum with y/& up to y/5 = 0.3 and then 1% falls slowly. Further
%) uef) *0 = f(y/8) 2 {22)

where the function f is found to be practically the same for all self-preserving flows.
Indeed outside the law of the wall region the function f is approximately proportional
to ¥ , the intermittency function, so that

Vt=l—1T/p=0.0168uef"Y 2 ()

Likewise, equation 2(8) can be used to determine experimentally the distribution of
the length f across a boundary layer. Within the logarithmic law of the wall region we
find as expected f/% = R{y/56 ). but outsids that region J/§ tends to a constant value

of about 0,08 to 0,09 for self-preserving boundary layers, A commonly used formula is

£/6 =0.085 tanh (55 £) 2 (24)

2.1.3 The Boundary Layer Equations

In this =section, it 1is convenient to include the terme arising from

compressibility, so that p and u are variables.

With the boundary layer approximations referred to in Section 2,1,1 the mean
equations of continuity, motion and energy for a viscous fluid in two dimensions, with
the flow at infinity steady, become

2 3 - 2 (25
By (P9 *5, ) =0 (

Ou o, du , doy_ dp, 237 2 (26
o PR Ve Ta T &y @)

where T =1 dy , for laminar flow,
By
=H3u - Pu 'v', for turbulent flow.
dy

Dh 3k 2 (27)

Oh 4, 2ky_%9, dp, .2
® Br p(uax +"ay)"ay1”dx”'ay
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where  q=k3T, for laminar flow,
3y
=k 3T - py 'h', for turbulent flow,
3y

Here, u,v are the mean velocity components in the streamwise direction parallel to the
surface (x) and normal to the surface (y), respectively, T is the mean temperature, h is
the mean enthalpy per unit mass (= [ CpdT), k is the coefficient of conductivity and
like ux is a variable in compressible flow, dashes denote turbulence fluctuations and a
bar denotes a mean value i.e. an average taken over a periocd that is long compared with
that typical ot the turbulence fluctuations.

An alternative to 2(27) can be obtained by adding it to u x equation 2(26) whence
we get

DhT ah dh

Por TPl TV E )T

’

where h’I‘ = h + (uz/2) and is sometimes called the total enthalpy per unit mass.
The boundary conditions are:-

y =0, u=v =0, Tor d3T/3y are specified,

y==r8), u=u 6, T=T (.

The momentum intcgral egquation can be obtained by integrating equation 2(26) with
respect to y from the surface to beyond the edge of the boundary layer. It can be
expressed for a perfect gas in the form (see Reference 2.1):-

d8 . 8 du 2 Tw
- t- - H+2-M = , 29
dx v, dxe [ e ] peue2 2(29)
b p u 6 M
where now " Pv _u * = LYl = 5*/8
[ _fo i Q u)dy,ﬁ j'o Q pu)dy,H &*/
e e e ee

and M, is the local free stream Mach number. Equation 2(29) 1s applicable to both
laminar and turbulent boundary layers.

A kinetic energy integral equation can be obtained by multiplying egquation 2(26) by

u ané then integrating with respect to y across the bhoundary layer. Tihis takes the form
for a perfect gas:-

& 2 ;
EPE+_E_:?Q [3+2~6-'i--Me ] =_3.2 Ibfii dy 2 $30)
dx v dx E pu dy
e 5 ee "o
Here 6E = f: Pu_ (1 -9——2 ) dy, (the kinetic energy thickness)
A Yo
b h .
ang 6H = P (= =1)dy, (the enthalpy thickness).
° Py, h

In incompressible flow by =0,

T3 @+un) 2 (28)
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2.1.4 Prediction Methods (Two-Dimensional Incompressible Flow)

The laminar boundary layer eguations are complete in themselves and require no
additional relations for their solution, and they can be solved to any required accuracy
given adequate computer capacity. However approximate methods have been developed that
are quick and simple to use and these are essentially based on the solution of the
momentum integral equation (equation 2(29)). They are well covered in many existing
text books (see, for example, References 2,1 and 2.2) and need not be considered further
here, At transition the momentum thickness ¢ is assumed continuous,

In contrast the turbulent boundary layer equations are not complete in themsclves
since the turbulence quantities arz unknown and additional relations {so called closure
relations) are required 1linking these gquantities with the mean flow to solve the
boundary layer equations. In the absence of a thorough understanding of the physics of
turbulence these closure relations must be empirically based and as such their validity
range cannot be confidently assessed.

We can classify the existing methods for providing the development of turbulent

boundary layers with specified external velocity distributions as either integral or
differential,

Integral methods have been developed since the earliest days of boundary layer

theory. They generally involve the solution of equation 2(29) coupled with two
additional and empirically based relations between ¢ , H, and T, Such a solution

w
leads to overall dquantities such as 4 , &* and Py which for many engineering

requirements are all that is needed, but such methods do not provide details of the flow
e.g. velocity and shear stress distributions, The auxiliary reclations used have ranged
from the simple aspumpiiuny of H = constant plus the local use of zero pressure gradient
power law relations (e.g. equations 2(4)) to empirically determined equations for dH/dx
plus the Ludwieg-Tillmann relation (Reference 2,12}

C,, = 2% =0.246 ry"0-268 1 0-678H

pu 2 2@31)
L

The resulting integration of the mementum integral equation yields the momentum
thickness 6 in the form of a simple quadrature with good accuracy irrespective of the
particular auxiliary relations used. However, the determination of §* (or H) and e
depends more sensitively on these relations and can justify the use of the more complex
ones. Amongst the most effective of such relations is the entrainment equation of Head
(Reference 2.13). This is based on the argument that the rate of entrainment of fluid
into the boundary layev is a function of the velocity profile in the outer part of the
boundary layer. This leads to a relation of the form

d
dax g BHY) =u FHY 2 (32)

where Hl = (&5 —85*%)/60 , and F(ul) is an empirically determined function. Further, by
making the assumption common to almost all integral methods that the velocity profiles

in a turbulent boundary layer can be regarded as uni-parametric, and if we take the
parameter as H, then




M V&m

e

rmw, Cesax

Hl = G(H), say,

where G(H) can also be determined empirically (approximately G(H) = 2H/(H-1)). The
required auxiliary relation then follows, The assumption that the boundary layer is
uni-parametric is equivalent to assuming near-equilibrium and Head & Patel subsequently
modified the method to include the effects of non-equilibrium {Reference 2.14),.

The kinetic eneryy integral egquation (equaticn 2(30)) can also be used to provide
an auxiliary relation and reference should be made to the method of Truckenbrodt in
which this equation plays a ceatral part. (See References 2.1, 2,15 and 2,16).

The successful development of differential methods has taken place within the last
decade and a half and started with a now classical papec by Bradshaw et al (Reference
2,17). They involve the direct numecical solution of the equations of motion (and of
energy for compressible flow). To solve the eguation of motion we nust relate in some
way the unknown Reynolds stress r = —5:737 to the mean motion, This can be done by
making use of the eddy viscosity concept ccoupled with a relation such as equation 2(23),
or the mixing length concept coupled with a relation such as equation 2(24), (see for
example References 2,18 and 2.19). Alternatively, or additionallv, use can be made of
one or more transport equations for turbulence quantities, e,g. Reynolds stress,
turbulence kinetic energy or turbulence dissipation rate (see for example, References
2,20 and 2,21). With such relations the closure cannot be completed without additional
assumptions based on the avajlable experimental data, The complexity of the
calculations rapidly increases with the number of equations invelved and the required
input of initial conditions correspondingly increases.

This complexity must be weighed against the considerable amncunt of detailed
information, €.4. mean velocity profiles, shear stress profiles, turb .ence jinteasities
that can be predicted by such methods, To illustrate the complexity the following is
the transport equation for the Reynolds stress -u'v' in two dimensional incompressible

flow, as derived from th= Navier-Stokes equations and then simplified by the usual
boundary laycr approximations,

D, ,—7, =,9 d 3 —
oy (V) Fly rugtvy) Buv)

=v'23‘1-_£p'.( LI LA BT 2 (33)

~
[o A NoY]
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o
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o
<

- V' +v'v2u|)

The left hand side is the rate of change of Zu'v' for a fluid particle, the first term
on the right hand side is the rate of generation by mean shear, the second is the
pressure-strain term and represents the tendency of pressure fluctuations to make the
turbulence more isotropic, .the third term arises from diffusion normal to the wall, and
the fourth term represents viscous dissipation effects which are due to viscous action on
the smaller eddies. The terms involving the pressure fluctuations present great
difficulty in approximating to them by suitable empirical approximations since they are
not direct’y measurable, Likewise, the corresponding transport equation for the
turbulence kinetic energy per unit mass kt=% (U'2+v'2+w'2) is

- 2,
Dk _ == 2u_3[ . P 8% _ )
pr FTTYY ’ﬂ'w["“r*’o‘ﬂ ¢ 2 i 2 (34
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where ¢ is the dissipation rate term = 1/2V (5—§1 +7r;1) . 1in tensor notation. Again
j i
the pressure fluctuation term presents the greatest problem for acceptable modeling.

A third transport equation that is also sometimes invoked 1is that for € . This
need not be reproduced here but it likewise includes terms involving p' as well as
gradients of the turbulence components which call fer a delicate combination of skill
and faith to model them by empirical relations of acceptable simplicity and reliability.

Bradshaw's method (Reference 2.17) still remains one of the most successful. He
converted the egquation for kt (equation 2(34)) into one for —u'v' by meking use of the
experimental observation that their ratio is nearly constant i.e.

-%:f-l =201, where o, =0.15, 2 (35)

Further, he introduced a length L= (-u'v')3/2/e and a quantity
v &, +p'/P)
%" T 269
mox .
and he argued that I and Gg could be regarded as functions of y/§ only, which he
determined from experimental data. He then solved numerically the combination of the
equations of .continuity, momentum and the modified turbulence energy equation with

boundary conditions determined clese to the wall by assuming that the law of the wall
holds there,

Later workers such as Launder and his colleagues (References 2.20 and 2.21) have
simplified the transport equations for kt and € by making use of similar empiricisms to
those of Bradshaw and solved them in combination with the mean flow equations with the
use of some empirically determined constants.

No one method has established itself as clearly superior to the others, Accuracy
does not necessarily increase with complexity and for many engineering purposes the
simpler methods (whether integral or differential) are quite adequate as well as
relatively economic in computing time. Interesting survey papers are to be found in
Reference 2,22.

2.1,5 Extension to Compressible Flow and Three Dimensions

The extension to compressible flow of prediction methods developed for
incompressible flow is frequently achieved by suitable transformation of the main
equations (which must now include the energy equation} so that they become similar in
torm to the corresponding equations in incompressible flow, The methods of solution
already developed for the latter can then be adapted to the former. A complicating
factor is the important part played by the thermal boundary conditions at the surface.
Such processes are, however, not without simplifying assumptions whose validity can only
be tested by comparison with experiment. Reference 2,23 1s a classic of this approach.

Another approach of appealiing simplicity is the use of the so-called mean
temperature (or enthalpy) method. This is based ‘on the hypothesis that the results of
incompressible flow apply 1f the values of density and viscosity are taken at a
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where §

to moderate supersonic Mach number with zero or small pressure gradients.
generally be adapted

distributions by providing local
Reference 2.26). There are

{Reference 2.27).
integral methods for cases

relatively simple and economic in computing time.

and Reynolds number for a smooth flat plate in zero pressu
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reference temperature, Tm, which is some mean temperature in the boundary layer, the

formula for which is determined eunpirically. sommer and Short (Reference 2.24), for
example derived for a turbulent boundary layer the relation,

T, =0.55T +0.45T +0.2(T -1 2 (37)

where Te is the free stream temperature, T _  is the wall temperature, and Tr is the

recovery temperature (i.e. the wall temperature for zero heat transfer) given by

Tr = Te (1 + 0.2 Mezo 1/3). Here a 1is the Prandtl number = u ecp/ke, ke being the
thermal gfnductivity of the free stream fluid and cP is the specific heat at constant
pressure.

As examples of the use of this concept we note that the power law relations between
c. and Rx and between CF and Rc on a flat plate at zero incidence (equation 2(4)) become

- ~1/5 0.62 .~ _ -1/5 0.62
¢ =0.0592R "7 (1 /1 7%, co=0.074R TV @1 /T )

forn=7, 2 (38)
_ -1/6 0.685 _ -1/6 0.685
and e = 0.0375 Rx (ra/Tm) R CF =0.045 Rc (Te/Tm)

fern=9,

Here it 1is assumed that the ambient temperature T is that

appropriate to normal
aircraft flight.

The corresponding heat transfer rates are given approximately by

s, = 0.6 ¢

t £

¢ (the Stanton number) = -qw/[OU ca —1}8

e pl w 2 (39)

The mean temperature concept has been shown to give reasonably accurate results up

It can more
integral methods for non-uniform pressure
relations of adequate accuracy (see,
still

in the simpler

for example,

relatively few experimental data for checking

prediction methods, but provided the flow is not close tu separation and the Mach number
he

is not greater than about 2.0 it seems that for many engineering needs methods using

mean temperature approximations are fairly reliable.

Head's entrainment method has been extended to compressible flow by Green
Green's method is generally accepted as one of the more reliable

involving large pressure gradients whilst still remaining

Spalding and Chi (Reference 2,53) have established a relation between skin friction

-adient for a wide range

¥ The corresponding mean temperature for a laminar boundary layer is (Reference 2,25)

T, = 0.45 T, + 0.55 T +20.132(Tr - T,)
1 = K o
with T, =T, (1 +0,2 M, 1
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of Mach number with heat transfer by taking a mean of the results predicted by a number
of existing methods, Their relation is convenient tc use and has been made the basis of
a comprehensive ESDU Data Sheet (Reference Z,54).

Differential methods have also been extended to compressible flow usually by the use of
suitable transformations to preserve the equations in forms for which the computing
programs already developed can be readily adapted, They cannot be easily summarised
here and the reader is referred to the extension by Bradshaw (Reference 2.28) of his
method, to a method based on the mixing length hypothesis developed by Michel et al
(Reference 2.18) and further developed by Quemard and Archibaud (Reference 2.29) and an
extension of the Jones-Launder method utilising the kt and € transport equations by
Prieur (Reference 2.30). Reference must also be made to methods directed at solving the
Navier~Stokes eguations in which modeling is confined to small scale turbulence whilst
large scale eddies are calculated, Such methods developed for compressible flow are
discussed by Rubesin (Reference 2.22, Paper 11). A valuable review is provided by
Fernholz and Finlay (Reference 2,31},

For the development of prediction methods to three dimensional flows a basic
difficulty arises inso far as the shear stress direction as well as magnitude are not
simply related to the direction and magnitude of the velocity gradient. This casts
further doubt on the validity of simple mixing length or eddy viscosity methods.

As long as the cross flow velccity component (i.e. the component normal to the
local free stream direction) is small it is possible t¢ treat the velocity components in
the streamwise direction ag independent of the cross flow. Two dimensiconal methods can
then be applied to the streamwise flow and the momentum equation for the cross flow can
subsequently be solved without difficulty (References 2.32 and 2.33). For more general
cases a number of workers have used the mixing length or eddy viscosity concept. Some
have treated the eddy viscosity as a scalar quantity, so assuming coincidence in
diraction of the resultant shear stress and velocity gradient (References 2.34 and
2.3%). such methods are relatively simple and it is fair to note that in the viscous
sub-layer as well as towards the auter edge of the boundary layer the directions of the
shear stress and velocity gradient do coincide so that in many cases the differen;e
between the two directions may be small enough for the assumptions made not to lead to
serious error. Other workers have attempted to distinguish between the eddy viscosity
in different directions and a seminal piece of analysis for such work was provided by
Rotta (Reference 2.36).

A widely used integral method with assumed forms for the cross flow velocity
profiles is that of P. D. Smith (Reference 2.37) who has developed an extension of
Green's method jin generalised curvilinear coordinates to three dimensional flows,
Bradshaw (Reference 2.39) has extended his two dimensional flow method to three
dimensions in which he used simplified forms of the shear stress transport equations in
two suitable orthogonal directions parallel to the surface. The method therefore does
not involve any identification of the tresultant shear stress direction and the velocity
gradient direction. As for prediction methods in two dimensional flow no method has yet
established itself as the best, and for most engineering needs simplicity and economy in
computing costs must rightly play a major part in the decision as to which to use., A
valuable comparison with experimental data of the predictions of a wide range of methods
will be found in Reference 2,39,
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2,2 Roughness Effects on Transition

2.2.1 Introduction

The complexity of the process of transition in a boundary layer from the laminar to
the turbulent condition is only partially understood and no general theory is as yet
available to provide a comprehensive predictive method. This was clear from the AGARD
Symposium on Laminar - Turbulent Transition held in Lyngby, Denmark, in 1977, (Reference
2.40). For the needs of the engineer and designer we must Lave recourse to predictions

based or empirical formulae that are inevitably of limited validity.

These comments apply particularly to the effects of roughness on transition., We
know that surface imperfections can induce an earlier transition than on a smooth
surface because they generate disturbances in the boundary layer in the form of eddies
ard vortices which modify the shape of the boundary layer velocity profile in their
neighborhood and wake so that the bocundary layer is rendered more unstable. In addition
the drag of the roughness is manifest in an increase of the boundary layer momentum
thickness and the associated boundary layer Reynolds number and this will also tend to
enhance the instability of the boundary layer and hasten the transition process.

If we consider an isolated excrescence located in the laminar boundary layer oa &
particular body in motion we find that there is a critical roughness height below which
no significant effect on traasition is apparent. This height depends primarily on the
roughness shape, location, the pressure distribution over the body, the body Reynolds
number, the external turbulence and on the transition position on the smooth surface.
As the height is increased, the transition moves upstream until a second critical height
1s reached at which transition occurs just downstream of the roughness and no furcher
transition movement occurs with further increase of roughness height, At that stage, if
the spanwise extent of the excrescence is of the same order as its height then the
turbulent region downstream takes the form of a wedge in plan of angle about 11° and
apex very cleose to the excrescence, On the other hand, if the spanwise extent of the
excrescence is large compared with its height then transition is induced over its entire

span.

These two critical roughness heights are of particular practical interest. An
early transition caused by surface roughness or imperfections can result in a
significant increcase in drag and henee in fucl consumption, as explained in Scction
2.1.1. It may also result in changes, usually deleterious, in any downstream
interaction of a shock wave and the boundary layer. It is therefore important *to know
the maximum height of roughness which can be accepted as having no effect on the

transition position. We will call this critical height k Oon the other hand, on

wind tunnel models it is often desirable to use a trgg;géion trip in the form of
roughness band fixed on the surface to induce transition immediately downstream of it,
The object is to fix the location of transition on the model so that (1) the drag
measurements will not be subject te variations in transition location and (2) the
measured drag values can be corrected to the full scale transition location. For this
purpose we need to estimate with some confidence the minimum size of trip required to
result in the desired transition pousition without incurring undue extra drag due to it.

The second critical roughness height, which we will denote as k is clearly useful

crit.2’
in this context. In any case we nced to take note of likely differences between the
effects of isclated excrescences such as rvivet heads, distributed roughness such as
paint and of excrescences of considerable spanwise extent (e.g. gaps between wing

planks, lap joints) which are sometimes described as two dimensional,
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2,2,2 rrhe First Critical Roughness Height kcrit. 1

An early approach to predicting this critical roughness height was that of Schiller
(Reference 2.41), who noted that for a given bluff body in steady motion at low Reynolds
number there is a critical value of the Reynolds number above which the laminar wake
behind the body becomes unsteady and vortices generated at the body move downstream in
the form of a vortex street, For a circular cylinder, for example, Ro it ™ vy d/v =150,
Schiller argued that for a roughness immersed in a laminar boundary layer there should
similarly be a critical Reynolds number, Rk‘ based on the roughness height k and the
velocity uy in the undisturbed boundary layer at the height k, above which we can expect
the roughness to shed eddies into the boundary layer which would help to destabilise it
and so cause transition to move upstream. We can then identify the roughness height k

with kcrit.l' This suggests that

Re crita) = G k) gy g = conste = €, say. 2 (40)

If k/86<<1 , where § is the boundary layer thickness, then for the basic case of an

excrescence on a flat plate with zero pressure gradient in incompressible flow, we can
write

p4
Uk_k(?) -Elw -ku"'
y w M hY
_k 2_ 0,664k 2
v %1l T Z\IV/ka Yo r 2 (&)
where T, = shear stress at the plate surface, u, = ‘/¢w/p (friction velocity),

<k = uexk/v, Xy = distance of excrescences from the plate leading edge.

kury2 k 2, % 42)

Hencs R = (07)? = 0,332 (xk) R, V2 2 (42)
' R, /2 /4

Also Uek/v Z(O_.:‘iﬁ) ka 2 (43)

Thus, given the values of Rk crit.l and X, we can determine the corresponding value of

kcrit.l'

If k/& is not small compared with unity then the above estimate for uy cannot be
applied, However, any standard mode of solution of the laminar boundary layer equations

can be used to yield u
pressure gradient

quartic form,

Kk’ and for the basic case considered of a flat plate with zero

in incompressible flow, we can usc either the approximate Pohlhausen

L2 @t
3

=,

o a2l

L A an -

L e et £l A o il s R e e i P A

Cas

o e




or the approximate trigonometric form

v o_ o
;;—Sin(}—%)

together with the relation §/x = 5/ JE;: where R, = uex/h. With the trigonometric form
we obtain instead of 2(43)

i
§

v k o vk
-8 & |- e -1/2
Ry =~ Sin [IC v Rk ] 2 ¢4

S o

Again, given the values of Rk crit.1 and X this relation can be used to determine

R g

the corresponding value of kc*it 1° However, as this is a more complicated relation
than 2(43) it is convenient to present it graphically in the form of 1oglo(uek/v ) as a

a function of (Rk)1/2 for various values of R , as in Figure 2.9,
it
5
‘ 7
ka =10
4 e
]
/// ]06
1
fr””,”——”’giﬂd’#
. // 10
s /<:///",,/
¢ 4
L v k /7‘0 R =y x /V
910(—£—) / xk Ve ¥k
) R = vk
1
0 20 40 60 80 100 120
R}/2
k
- Figure 2,9, Chart for Determining kcrh' Given Rk erit. and ka for Basic Case of Zero

Pressure Gradient, Incompressible Flow (Equation 2(44))

Experiments by Smith & Clutter (Reference 2.42) on a variety of excrescence shapes
i in both zero and non-zero pressure gradients (mostly favourable) and a range of
{ intensities of tunnel iturbulence yielded the following values of Rk crit.1’
t
N Range of R
i Roughness k crit., 1
B Spanvise wires 40 - 260
Protruding discs of
circular section 180 - 550

(dia. = 1.6 mm)

Spanwise strips of

sandpaper 180 - 330
(width = 6.4 mm)
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They found the effects of pressure gradient and of tunnel turbulence on Rk cric.l
to be small. At first sight this is surprising but one notes that whilst a favourable
pressure gradient would tend to reduce the boundary layer thickness and make its
velocity profile fuller, and to that extznt would enhance the disturbances produced by a
given roughness, it also tends to increase the stability oif the boundary layer. Similar
balancing factors apply to the effects of frec stream turbulence.

Braslow (Reference 2.43) has analysed a wide range of data to present
K crit.l}l/z as a function of d/k, where 4 is the spanwise dimension of a typical
roughness, on the argument that this is a paramcter of the roughness shape which must
play an important part in determining ﬂxcrit.l' His results are represented in Figure 2.10
not in detail but as a band showing the variation about the mean curve, It will be seen
that for d/k = 2.0 (hemi-spherical roughness) the value of (R 172 A

K it.1) >~ 23 - 6,
] 1/2 + Tk oecrit.l’
but for d/k = 30 the value of (Ry crit 1! =~ 12 - 4. Judging by Smith & Clutter's

results the value for two dimensional excrescences (d/k = o0 ) would be about 11 pt 4.

100
60
40
30
20 o',
(Rk crit, l) I/ 2 g ‘:l::' ll‘x‘ R A AR X
i0

0.1 0.2 0.4 0.81,0 2.0 406.0 10 20 3040
4/

Figure 2.10. (Rk crit ])I'/? as Function of Roughness Shape Parameter d/k (Braslow)

Braslow also Qemonstrated that there is a significant interference effect with a
pair of cylindrical excrescence elements if their spanwise spacing is less than about 3
d apart (see Figure 2.11). Their disturbing effects then evidently augment each other
and Ry erit.l is reduced by the interference. On the other hand, if they are spaced
streamwise then the interfercnce effect is such as to increase Ry _ ...y if the spacing

is less than about 4 d but for higher spacings up to 20 d the effect is to reduce

Rk crit.1 (see Figure 2.12). It seems that at a close enough spacing a steady voriex
system forms between the excrescences and the disturbances shed by the rear excrescence
are somewhat less intense than from an isolated excrescence, At higher spacings the
cxcrescence experiences the unsteady wake from the front one and the final downstream
disturbance level is somewhat enhanced as a resvlt.
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Figure 2,11, Effect of Spanwise Spacing of Pair of Cylindrica! Elements on Rk
(Braslow)

crit. 1

R crir. 1Y PAR O, &3
1 S LA T -
R Crif . }) SI?‘}GLE
1.0F
9
" A 1 A 1 A 1 ] X 3

Figure 2.12, Effect of Streamwise Spacing of Pair of Cylindrical Elemeats on Rk

crit, 1
(Braslow)

Braslow's analysis showed little effect of Mach number on Ry opjt,l W to 2 main
stream Mach number of 3.0 but with some indication of a reduction for higher Mach
numbers (‘/R_l:—c—::t._l =~ 15 for Me = 3.7 and d/k = 1.0}, It should ve noted that if
Rk crit.1 is independent of Mach number then kcrit.l.
since the velocity at a given height in the houndary layer decreasss with incrveasc of
Mach number.

must 1increase with Mach number

To sum up, for general predictive purposes the available data are such that one is
not likely to be able tc do better than to make use of Figure 2.10 for determining the
value of Ry arit.1° Where it is important to avoid early transition it is best (o
choose a value near tha lower limit of the band. From the value of K and the

k crit,l

given value of X the corresponding value of k can be determined from a soluiion

crit.l
of the laminar boundary layer equations or more approximately from edquation 2{43) or

2(44) (or from Figure 2,9) depending on the magnitude of kcrit 1/5 .
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2.2.3 The Second Critical Roughness Height kcrit.Z
The available data show that kcrit.z is of the order of twice kcrit.l' Early work
of Fage & Preston (Refercnce 2.44) indicated that R > 400 for a wire trip, but

k crit,2
Klebanoff et al (Reference 2,45) obtained values ranging from 140 to 1000 depending on

the local pressure gradient ané the Jlevel of tunnel turbulence, Gibbings & flall
(Reference 2,46) inferred the following relation mainly from the data of Tani (Reference
2.47).

vk |
8 crit, 2 =163.7 R 0.15 2 (45)
v xk

Smith & Clutter (kReference 2.42) found the value of Rk crit.2 to be about 300 for a wire
trip, whilst for their protruding cylindrical excrescences and their sandpaper trip the
corresponding values were about 600 and 400, respectively. From eguation 2(43) for

k/8 <<1 we can expect that for constant R,

. er o . ient
% crit.2 and zeoro pressure grad

Yo I'(cril._'_ = const, kao'zs 2 (4)
v

which differs somcwhat from the Gibbings-Hall relation, eguation 2(45). Van Driest &
Blumer (Refercence 2.48) inferred from tests at supersonic speeds of spherical roughness

arranged in a band round a cone, as well as trom tests of similar excrescences on a flat
plate at zero incidence at low speeds, that

Vecrir,2 =42.68 0P [, L0y 2:|
xk —— Me

v 2 2 47)

where M, is the Mach number at the outer edge of the boundary layer and 7 is the ratio
of the specific heats (1.4 for air). It should be noted that some distance was
increasingly evident between the trip and the transition position with increase of Mach

number (see¢ Figure 2.13),

2.0r

+
v

Figure 2.13. interval (Ax') Between Transition Tt {Band of Spherical Elements) and

Transition as Function of Mach Number (Van Driest & Blumer)
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, ' It scems that in the absence of more data and convincing analysis of the effects of
pressure gradient and external turbulence we can predict kcrit 2 in incompressible flow
g on the basis of an assumed value of R erit.? in the range 300 to 400 for wire trips and
i about 600 for roughness bands. For speeds at which compressibility effects are
)
i significant, equation 2(47) indicates that the factor [ 1 +(Y -1)/2 Me2] should be
¥
§ applied to the low speed value of R, rje.2+ From the value of Ry crit.? and a given

value of x, the corresponding value of k 2 {just as for k ¢an be determined

k crit. crit.l)
from equation 2(43) or eguation 2(44) (or Figure 2.9) depending on the order of
: magnitude of k... ,/5 . Alternatively, the Gibbings-Hall relation, equation 2(4%),
could be used for wire trips, whilst equation 2(47) could be used for spherical

B roughness bands.

It should be noted that all forms of trip will cause an increase in the momentum

defect in the boundary layer because of their drag. For example for a wire trip, if CDh
is the drag coefficient in terms of its height h times its span and the velocity Uy,
i.e.

; D= CD £ th h, per unit span,
. h 2

then the momentum thickness will be increased by the wire by an amount

D
Ab= —

u
_ 2 (48)
=C —)} h
F"ue2 Dh QJe

Preston (Reference 2.49) has shown that turbulent flow cannot be sustzined for values of l!
Ry < 320. It follows that to stimulate transition the total § after the trip rust be II
such that Ry there must exceed this value. A trip that is made up of spanwise pieces

may prove more cffective in provoking transition than a continous trip because of the i

drag associated with the eddies generated by the flow round the ends of the pieces,

2.2.4 The Effects of Sweep

So far we have ignored the effects of sweep and this is probably justified as long
as the secondary flows in the boundary layer are small, i.e. the flow direction in the
boundary Jayer is not markedly variable across it, However, in the region of the
leading edge of a swept wing, where there are strong pressure gradients normal to the
leading edge as well as a flow component in the spanwise direction, the secondary flows
are important and the effects of roughness and trancition present special features.

In two dimensional unswept flow the boundary layer at the front stagnation point of
a round nosed wing is of finite thickness whicn for small s, the distance from the
stagnation point, is independent of s. The scale of the velocity in the boundary layer
is determined by u, where u, is the velocity just outside the boundary layer. For small
s, we find that

VTR WL AR %

AR

Ug = B s, where B » Vo/p!

r denotes the radius of curvature of the wing leading edge and v, is the undisturbed
stream velocity (the constant of proportionality depends on the section).




Now consider an infinite swept wing. For the laminar boundary layer near the
leading edge the so-called principle of independence applies, i.e. the flow in planes
normal to the leading edge is independent of that parallel to it (Reference 2.50}. The
boundary layer flow there is therefore a combination of that derived for two dimensional
flow normal to the leading edge in a main stream flow of wvelocity Un = Vo Cos A and a
flow parallel 1o it with main stream component u, = Vo Sin A, where V0 is the

resultant main stream velocity and A is the angle of sweep.

We here use suffixes n and t to denote components normal and parallel to the
leading edge. We have seen that the former will change rapidly with s being determined
in scale by Uen = B s with B now proportional to Vo Cos A/r . The boundary layer
velocity components parallel to the leading edge are constant in scale and change
relatively little in form with s, The resulting boundary layer velocity distributions
therefore have component profiles in some directions which have points of inflection and
can therefore be cxpected to have a tendency to be unstable to small disturbances along
such directions above a relatively low Reynolds number. This kind ot instability can be
controlled by a relatively modest degree of boundary layer suction (Reference 2,51).
However, in addition a more potsnt source of transition can arise since the boundary
layer 1is of finite thickness along the 1lecading edge and can be tripped to become
turbulent by excrescences there for which the Reynolds number is above some critical
value determined by Ut and 0 the momentum thickness in the spanwise direction,
Gaster (Reference 2.52) has analysed some wind tunnel and flight data to determine the
critical value of R at = Ut ot/v above which turbulence once introduced will prapogate
alony the leading edge however long it is and so contaminate the boundary layer over the
surface downstream. He found the critical value to be about 1060, The turbulence can
arise from the wing-body junction or be induced by roughness in the region of the
leading edge. Using trip wires of diameter 4@ fixed round the leading edge he found that

the critical size of wire to provoke turbulence close to the wire was given by

du L 1/2
(:n) crit, =47 Ry 2 (49)

it is interecsting to note that this is gquite close to the relation one would deduce
from equation 2(43) for the critical wire size if one uses the value given by Fage &

Preston for R 2 for a wire trip on a flat plete with zero pressure gradient,

k crit
namely 400, which leads to
v k _ 1/2
(i)cri?. =43 RB ’
v
where R(l = u, #/v . This agreement presumably reflects the fact that the velocity

profile in the direction of the leading edge of a swept wing is not greatly different
from that of a laminar boundary layer in two dimensional flow and with zero pressure

gradient.

Theory yields 9'=0.4OVQ7§ 2 (50)
and q,=°-27dx75

Since B = ZVO Cos A/r, it follcws that a decreasc of wing sweep or of leading edge

radius r help to increase the critical roughness height.
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3. DISTRUBUTED ROUGANESS IN TURBULENT BOUNDARY LAYERS
(ZERCO OR SMALL PRESSURE GRADIENTS)

3.1 Bagic Effects. Sand Roughness and Critical Roughness Heights

In what follows a typical height of a roughness element will be denoted as k and it
will be assumed that in general k is small compared with the boundary layer thickness.
Larger excrescences will be included under the heading ‘discrete' and discussed in

Section 4.

Qur basic understanding of the effects of distributed roughness in turbulent
boundary layers owes much to the classical experiments of Nikuradse (Reference 3.1)
vsing sand roughness on the inner surfaces of circular sectioned pipes. The sand grains
were kept closely uniform for any one test and were fixed in a closely packed

arrangement. The tests covered & range of grain sizes and of pipe radii. An
illustrative plot of some of his results for skin friction is given in Figure 3,1. 1In
that figqure Cem = T w/'/,pumz,where uy is the mean velocity over the pipe cross section,

a is the pipe radius and kg, is the sand grain height.
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Figure 3~1. Friction Coefficients of Sand~Roughened Pipes as Functions of Pipe Reynolds Number (Nikuradse)

It will ke seen that for each roughness size there is a critical pipe Reynolds
number (um 2a/v) below which there is no effect of the roughness on Cep-  The surface
is then referred to as hydraulically smooth. With increase of Reynolds number above the
critical value the skin friction coefficient increases above that of the smooth pipe
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showing that the roughnesses are then shedding eddies into the flow which contribute to
the momentum loss. This drag increment is a combination of the sum of the pressure (or
form} drags ol the excrescences and the accompanying changes of the local surface
friction, but the former rapidly becomes dJdominant as the Reynolds number is increased.
Finally, we note that above a second critical Reynolds number ¢ .= is constant and
independent of any further increase of Reynolds number, We infer that at that stage the
drag is almost wholly due to the pressure drag increments of the roughnesses and hence
becomes insensitive to Reynolds number, We call the flow regime in the pipe at that
stage fully developed roughness flow. The intermediate flow regime between the two
critical Reynolds numbers is sometimes referred to as the 'transition regime', but to

avoid confusion with the more common use of 'transition' to describe the change from
laminar to turbulent flow in the boundary layer, we will refer to this regime as the
intermediate rough regime.

It is generally accepted that the hydraulically smooth regime is one where the
rouchnesses do not protrude through the viscous sub-layer. The argument is that this
layer is one of high damping of eddies and so eddies generated by the roughness within
it do not convect downstream and add to the momentum loss, instead they remain between
the roughnesses effectively smoothing the surface. This reasoning implies that
roughnesses for which the flow is hydraulically smooth must satisfy:

0 < upk/vss, 31

if we take 5 as a safe lower limit for determining ¥?+ = Ug X[/” , whervre ¥y is the

thickness of the viscous sub-layer. This relation is consistent with Nikuradse's
measurements.

The beginning of the £fully developed roughness regime is likewise characterised by

a value of u, k/p which in Nikuradse's experiments on sand roughness in incompressible

flow is shown to be about 70, i.e.
Up ks/ vz 70 3 (2)

for this regime, Here we use suffix s to denote the sand roughness as tested by

Nikuradse since for other types of roughness we can expect the limiting value of u, k/v
for fully developed roughness to differ,

These pipe flow results can be readily adapted to determine the ecffects of sana
voughness on the flow over a flat plate at zero incidence. We replace the pipe radius a
by the boundary layer thickness & which is then a growing function of x the distance
from the leading edge. Hence, with a given roughness uniformly distributed over the
plate we can expect an initial region of fully developed roughness flow followed by a
region of intermediate rough flow, and if the plate choxd is of sufficient length there
will finally be a region of hydraulically smooth flow. Plots of the limiting roughness
heights for fully developed rough and hydraulically smooth flows, deduced from egquations
3(1) and 3(2) above are presented in Figure 3,2 in the form of loglo(x/k) as a function
of log(Rx)' It is of interest to note that the minimum roughness height to provoke
transition in the laminar boundary layer for a given R, is several times larger than the
limiting value for hydraulically smooth flow with the boundary layer turbulent. This
can be readily inferred from Figure 2.9, 2.10 and 3.2 by considering typical values of

*
Rk crit.l and ka'

*  For example, if (R, _ .. 1) = 20 and R, = 10° we find from Figure 2.9 that
Keciv 1/%c = 10-3, whilst from Fiqure 3.2 we find that for hydraulically smooth flow

with R, =R = 106 we must have k/xk < 10-3'9.
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Figure 3-2. Limiting Roughness Sizes (k) for Hydraulically Smooth Flow and for Fully Rough Flow
With Sand Roughness, Turbulent Boundary Layer

Prandtl and Schlichting (Reference 3.2) have adapted Nikuradse's results to
determine the local and overall skin friction coefficients on sand roughened plates at
zero incidence for a wide range of the ratio roughness height/plate chord (ks/c) and of
the plate Reynolds number. Their results are presented in Figure 3.3 and 3.4, with
Figure 3.3 showing the local skin friction coefficient Cg as a function of Rx = Vox/v
for different values of x/ks, whilst Fiqure 3.4 shows the overall skin friction
coefficient CF as a function of RC = Voc/u for different values of c/ks. The latter
can be conveniently presented in a somewhat different way (Figure 3.5) as A D/D as a
function of K, for different c/ks, where D is the drag of the smooth plate and AD is
the drag increase due to the roughness.
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Figure 3-3. Local Skin Friction Coefficient of Sand-Roughened Plate (Prandtl-Schlichting
Deductions from Nikuradse's Pipe Flow Experiments)
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The above formulae etc., refer to incompressible flow. The effects of

compressibility and heat transfer on roughness effects have not been thoroughly
investigated and reliable generalised relations are not yet available, However, it can
be plausibly argued that the above relations will still apply provided the relevant
density and viscosity values are taken at their wall values since these are the values
in the flow region in which the roughnesses operate. Thus, for u, we should understand

1 . .
U, = (Tw/ Pw) /2 and for ¥ we should understand » w" Now Ty will itself vary with
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Mach number and wall tempevature and if we accept the Sommer and Short mean enthalpy
formula we find that:

0.65
T (Te/Tm) , approx.

1 T
where <%= 0.55 40,45 7 40,63 Mf,
() [}

and Te is the local free stream temperature,

It follows that if a critical roughness height ks is such that ufwks/ v, = const.,

independent of Mach number, then

kT 139 1
5 .55 +0.45 T +0.036 M 20 30)
si e e

where X . is the value for incompressible flow. Here we have taken the coefticient of

viscosity u a T 0'89.

For zero heat transfer Tw/Te =1+ [{7Y~-1)/2] Mear, where r is the recovery factor

= 0.89 for air, and 7 = cp/c:v {the ratio of specific heats) = 1.40 for air. Then we
get
kg 2.1.39 2,0.325
i (1 +0.178 Me ) (1 +0.214 Ma ) 3 @)
si
Thus, for Me = 1, k.:_;/ks‘1 = 1.34; and for Me = 2, ks/kSi = 2,58. These results reflect

the known increase of the viscous sub-layer thickness with Mach number.

Pursuing this argument further Berg (Reference 3.3) has collected data for
roughnesses on a flat plate indicating thac over a wide rznge of Mach numbers up to 6
and a variety of roughness forms the drag increment due to the roughnesses as a ratio of
the smooth surface drag was a unique function of u w ks/ L where kS is the eguiva-
lent sand roughness height in incompressible flow (see Section 3.3). This implies that

Figure 3.5 can be taken as applying to cumpressible flow provided one replacces L by

1/2
» 1,39
=k o {fe) =k (/1) 36)
sw g v P
w w
For zero heat transfer ksw = ks /il + (y-=1)/2 MEZ ri 1.39 36
which for Me = 1 gives ksw = O.Eks; and for Me = 2 we get ksw = {,47 ks,

This indicates that the proportional effect of a given roughness on drag for zero heat
transfer decreases with Mach number as might be cexpected from the fact that the drag
increment would be largely determined by the air density at the wall P However, the
results analysed by Berg appear to be all for roughnesses small enough to be immersed in
the subsonic part of the bourdary layer and so would nct contribute to the drag by

generating shock waves. It cannot therefore be assumed that results based on Figure 3.5
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and equations 3(5) or 3(6) will apply to roughnesses large enough to penetrate into the
supersonic part of the boundary layer.

3.2 Velocity Distributions in the Boundary Layer

The eddies generated by distributed roughnesses of height small compared to the
boundary layer thickness rapidly get absorbed in the local turbulence of the boundary
layer without significantly changing its structure, The main effect is therefore to
increass the value of the shear stress in the region of the boundary layer clese to the
surface but there is no loss of validity of the general dimensional reasoning underlying
the law of the wall and the defect velocity law derived for smooth walls (see Section
2,12).

Thus, we can again infer that in the law of the wall region for incompressible flow

U=AuT|ny+B 3D

where A = 1/K, K being the von Karman constant (0.4-0.41), as for a smooth wall, but B
is a constant that will in general depend on the roughness size and geometry.

To examine the nature of B more closely we can argue that there must be some lower
limit of y, say Yo below which 3{(7) cannot be expected to apply, and Yo will be a

function of k, the roughness height, u, and v as well as of the roughness shape. For

similar shaped roughne:-ses we therefoire write:

¥0ﬂ< =f up kN, say,

where £ is some function of the rouchness geometry.

Hence u-u (y0 )= Aln(y,/yo) =A Inly/f).

But since u(yo) will depend on u,, k and v we may expect u(yo)/u! tce be a function of
(up kX/v ) and so we can write

u/u,r =A In(y/k) + hu, k/N, 3 (8)

where h(u. k/+v ) is some function of u k/v as well as of the form and distribution of
the roughnesses concerned.

Nikuradse's results for sand roughened pipes provided good support for this
relation and the resulting function h for closely packed sand grains is illustrated in
Figure 3.6. We find that for u, ks/v < 5 his function h is approximately given by

h (g ks/V) =5.5+2.5In(ug kJV)
so that with Nikuradse's value of A = 2,5

U/UT =2.5 Infu,y/Vv) +5.5 30
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3

in agreement with tile law of the wall for a smoolh surface [|=f. equation 2(11))]. This

therciore defines the raange of u, k_/v for which the flow 1s hydraulically smooth.

on the otner hand for u, k_s/v >7G, approx., we sew that Nikuradse's {unction h s
r7s

a constant = 8.5, so that then

uvy = 2.5 Infy/A ) + 8.5, 3 (10)

This therefore corresponds to the range of rougnness for which the velocity profile
and surface friction ave independent of Xeynolds number -~ i.¢. the regime that we have
labelled fully developed roughnecs fiow. Fur the icitermediaxe rough regime 5<(“rk$/‘)<70
both the viscous and the coughness form drag contvibusliors to the total roughness Jrag

can be imporuvaat.

Equation 3(8) can be reguavded us the generalised f£orm o1 the logarithmic law of the
wall for walls with Jdistributeé vrougnness. There ace othear ways of expressing it which
have their uses. Perry and Joubert (Ref{erence 2.4) argued that since the direct effects
of the roughness were apparent only in the tiin iaper region of the boundary layer where
the direct effects of viscosity are also coniined; tne roughness could be regarded as
equivalent in its effect on the velocity distribution to & change of kinematic viscosity

from v to v say. Hence the logarithwic law of the wail should take the form:

eq’

v/u, = Alnly o, ,/\'uq) B




where B is now the same constant as for a smooth wall (5.5 if A is taken as 2.5). But
on dimensional grounde one c<an expect veq/ v to be a function of ku /v and it
follows that 3(1l) can also be written

vfur = Aln{y/k) +hlu k/v)

alras

in agreement with 3(8), Further, from eguation 3{1ll), we see that we can write

u/u.r =Alnly vue/V) +B=Aln (voq/v)

=A|n(yu1. ~) +B-Au/u.,. 3(12)

1 2V

where Au/uy is a function of u; k/v .

RTY T

Hence, for the logarithmic law of the wall region, the plot of u/u, as a function
of In(yu, /v ) tor any given roughness is linear with slope A, independent of the rough-
ness, and displaced parallel to the basic plot for a smooth surface; the displacement
Au/uq is a function of u; k/v Yor roughnesses of similar shape., A wide range of
experimental results of different workers amply confirms this conclusion (see References
2.9, 2,10, 3.4, 3,5, 3.6, 3.7 and 3.8).

v g

However, a difficulty arises in the analysis of experimental data since the above
relations cannot bhe expected to apply for values of y less than the tecps of the
roughnesses nor indeed can velocity measurements there readily fit any generalised
formulae, Even on a smooth wall a displaced origin for y must be assumed to achieve a
realistic blending with the viscous sub-layer (see equation 2(12)). A displaced origin
is therefore also required for the analysis of data on a rough wall particularly for the
flow region close to the roughness tips. This origin is taken to be a distance ¢ below

the maximum roughness height:-

Thus, instead of 3(12) we write

u/u.,. =A|n[()"|'+€)u'r /vl +B-Au/u.1. . 3(13)

7SI Y Y R R TG e Y

where Yo is the value of y measured frem the highest roughness tip. Following Clauser

we can multiply this equation by |.11,’ue to get

oo, = Aery/DV 2l typ + 8o 1+ (e /D2 (A ke /22 48 - dufo,] 3 (14)
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where ¢ = 2v ./ pu 2
fe w e
Mence, given A and B from smooth surface data the correct choice of € should lead
to a linear relation between u/u, and In l(yT + e )ue/v ] with slope given by
A(cfe/ﬁ)l/z, so that Cgo Can be determined from this slope. Further, the ordinate

intercept should be («:fe/Z)l/2

{A 1n(c£e)1/2+8— u/u,] when ln[(yT+ ¢ )ue/v } =0, and
hence A u/u, can be determined from it. However, it is not always casy to establish
the value of « to the accuracy required. The methods that have been adopted cannot be
gone into in detail here, the interested reader is referred to References 3.4 and 3.8
for such details; but it may be noted that the use of other methods for estimating Cfe
{eg. the momentum integral ecquation or hot wire measurements to determine the eddy
stress near the wall) can provide independent checks on the above 'Clauser plot'
approach. It appears that ¢/k = 0.5 for zero pressure gradient and €/k = 0.2 for
moderate adverse pressure gradients. The experimental data of a number of different

workers all provide strong supsort for the above analysis,

From equution 3(8) we have seen that for fully developed roughness flow
v/us =Alnly/k) +C,

where C is a constant dependent only on the roughness form. If we compare this with
equation 3(12) we see that we can write

Au/up = A Inku, V) +D, 3 (i5)

where D is a constant dependent only on the roughness form,

Figure 3,7 taken from Reference 3.8 shows Au/u, plotted against loglo(ku,/v ) for
a variety of regular shaped roughnesses and Figure 3.8 also from Reference 3.8 shows
similarly some results for surfaces covered with commercial abrasive papers in zero and
a moderate adverse pressure gradient. Perry and Joubert (Reference 3.,4) tested
roughness elements 1identical to those of Moore illustrated in Figure 3.7 but in the
presence of adverse pressure gradients and their results fit with relatively small
scatter the mean line shown in Figure 3.7 passing through Moore's results, These
results show that the above law of the wall relations for rough surfaces, like the law
of the wall for a smooth surface, are insensitive to pressure gradients and for the same
basic reason, namely, that the flow in the region concerned is determined solely by ug,
y and v .

The above discussion refers to what is described in the literature as k type
roughnesses, 1i.e. roughnesses which generate eddies which are convected into the
boundary layer above the roughnesses as a contiruous process and they merge with the
turbulence there to augment the overall momentum loss. However, exceptionally, if the
excrescences are of a simple and uniform geometry so spaced that regular vortices form
in the gaps between the excrescences and remain trapped there then the excrescences and
vortices may form what is in ektfect a smooth contour for the becundary laye: flow above
to follow with no additional eddies being generated to disturb 1t. The main effect on
the boundary layer is that it has a mixed boundary condition at the level of the
excrescences of partly free and partly solid surface and the streamlines ave relatively
smooth and undisturbed. Such roughnesses are referred to as d type. The distinction
betwecen the two types is illustrated in Figure 3,9, It is evident that for the d type
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the excrescences must be very uniform in height, since small variations can readily
introduce some of the characteristics of k type roughnesses into the flow. Their drag
and flow effects are of course much smaller than for k type troughnesses and do not
reveal any direct dependrnce on the excrescence height, the important length dimension
scems to be that of the overall flow, e.g. pipe diameter for flow in a pipe or boundary
layer thickness for flow over a plate.

The existence of the d type roughness has been revealed almost accidentally in a
i few investigations of regular excrescence patterus and of the effects of grooves
regularly scribed in an otherwise smooth surface. Perry, Schofield and Joubert
(Reference 3.9) have madce careful investigation of a d type flow formed by transverse
rectangular section bars about one height apart in both zero and two different adverse
pressure gradients, In addition, Wuod and Antonia (Reference 3.10) have examined the
3 Lurbulence components in the boundary layer above the excrescences and have noted little
difference from the corresponding results for a smooth surface., A fuller discussion of

the drag effects of discrete excrescences isolated or in arrays will be given in Section 4,

We come now to the description of the boundary layer velocity distribution outside
the region where the law of the wall applies, i.e. the region of the velocity defect

' law. Applying the arguments already applied to a smooth wall (see Section 2,1,2) we
i : again infer that there

y -
e

=f ( y/5), for a plate with zera pressure gradient,
vr 3 (16)

=a( v/c), for flov in a pipe,

T

where { and g are functicns to be determined by experiment. For flows with appreciable

pressure gradients additional parameters involving these gradients are required on the
right hand side.

From the argument that roughness effects are essentially confined tc the law of the
wall region we may infer that the forms of the functions f and g are the same for rough
as for smooth walls. This is well borne out by experimental results, Thus, if we make
usa of Coles Jaw of the wake hypothesis (see Section 2,1.2, equation 2{18)) we can write
for the velncity distribution in the boundary layer

u/ur = A In[(y.r + E)ug /v] +B - l\u/U.r +TA wly/d) 3(17)

W

where w (y/0 ) is Coies' wake function, given with good approximation in eqguation 2(19)
and ]l is the form parameter determined by the pressure distribution. From 3(17) it
tollows that for the flow over a plate

Ue/Uq-:Al“ (Bug V) +B~ Au/uy +2TA 3 (18
and hence
U =u
S =Aln(y/5) +TAL-wly/8)]
r
[ where we have written y“/T+€. 319

For the flow in a pipe

v =u

= -A In{y/a) + TA[2-wly/a)].
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These are the same expressions as for & smooth wall, the only effect of the youghness
being on the scaling velocity u, .

From equations 3(13) and 3(18) it follows that for fully developed roughness flow

ue/u,‘. =A In(b/k) +B=D +20A

or Qkhﬂ/2=Alﬂ%m)+&D+2ﬂA. 3 (20)

3.3 Equivalent Sand Roughness Concent

The wide scope of Nikuradse's results for the closely packed sand roughness that he
tested on the irner surfaces of pipes of circular section and the ready applicability of
the Prandtl-Schlichting relations based on these results for similarly roughened plates,
wings and bodies leads to the hope that they can be used for other forms of roughness.
Thus, we seek to determine whether for any given form of roughness there 1is an
equivalent sand roughness so that its effect on surface drag etc., can be qguickly

Jerived from Nikuradse's results or the Prandtl-Schlichting curves (Ficures 3.3, 3.4 and
3.5).

From equation 3(8) we can write for fully developed roughness flow

N

where hfr is a constant Jd2pendent only on the type and distribution of the roughness.
For Nikuradse's scand rouchness hfr = 8.5, equation 3(10). If the velocity profile and
the corresponding value of u; for a given t_pe of roughness are to be the same as for
an egquivalent sand roughness then it follows that

A ln(k/ks) =8.5 - hfr 3(2)

where k and ks are the representative heights of the roughness and its sand equivalent.
Thus, If we determine hfr from the measurea wvelocity profile for tie roughness k under
test we can use eguation 3/21) to determine the equivalent sand roughness ks.

Schlichting (Reference 3.11) performed a series of tests on various forms of
distributed but reqular excrescences in the form of spheres, spherical segments, cones,
vighi—anyied corner pieces of various sizes and epacings on one wall of a pipe of
rectangular section. He was able to establish in all cases an equivalent sand ronghness
as described above, Yourqd (Reference 3,12) measured by means of the pitot traverse
method the profile drag of a wing of NACA (012 section at zerc incidence with various
paint finishes of different roughness over a range of subsonic speeds and he likewise
concluded that for each surface an equivalent sand rouughness could be determined, A
similar result followed from tests of thread roughnesses in pipes by Streeter (Reference
3.,13) and by Moebius (Reference 3.14), commercially rough pipes by Moody (Reference
3.15) and of transverse rods on a plate by Betterman ‘Reference 3.7). It should be
emphasised, however, that equation 3(21) applies only to the fully developed roughness
regime ar he eqguivalence does not necessarily hold in the intetmediate rough regime.

Various attewmpts have been made to relate the ratio a = k/ks to the spacing and
shape of the roughnesses in order to derive a method for predicting w. The most effec~
tive appears to be that of Grabow and White (Refevence 3.16) who have predicted a as an
empirical function of a parameter A given by

h= (e mA)”S, 3 22)
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where !r is the mean distance between roughness elements, X is the mean roughness
height, A_ is the maximum cross-section area of a roughness normal to the flow, As is

o
] the surtace area of a roughness forward of the section of maximum cross-section area,
3 . -1/2 . .
We can interpret [r as N / , where N is the number of roughness elaments per unit

surface area. A prnagentation of Grabow and White's correlation updated Ly Blanchard
(Reference 3.8) to include his own resulta is shown in Figure 3.10. It will be seen

b e

that on the whole the mean lines shown provide a reasonable fit to the data analysed

which include a wide range of different forms of roughness, although the scatter is
somewhat masked by the Jlogarithmic scaling. A striking result is that there is a
minimum value of a (= 0.15) whivh occurs for A = 5; this reflects the fact that for a
b given form of roughness there is a density of surface packing that yields a maximum drag
increment, If che roughnesses are more closely packed than this then they become
increasingly immersed in the wakes of upstream roughnesses and the total drag increment
is reduced. If they are less tightly packed then their numbers are reduced per unit
area and again the total drag increment is reduced. Nikuradse's sand grains were packed
as close as possible and their drag increment was well below the maximum.
Jay
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Figure 3-10, The E¢  alent San-’ Roughness, According to Grabow &. White. (Data used Cover 18
Wide ...nge of Different Types of Roughness) "
With the aid of this correlation and Nikuradse's basic sand roughness results (as ]
in Figures 3.3, 3.4 and 3.,5) it is therefore possible to make an estimate of the dray
effects of a specified form of distrib.ted roughness in turbulent boundary layers in j
pipes and on flat plates with zero pressare gradient, These <an witn little further 7
loss of accuracy be extended te wings and bodies, particularly if a plot such as that of
: Figure 3.5 is used. This last point will become clearer when we discusg in Section 5 in
more detail the effects of a non~uniform pressure distvibution,
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3.4 Discontinuous Changes of Roughness

A number of investigations have been made of the changes in velocity distribution,
turbulence characteristics and surface shear stress
condition from smooth to distributed roughaness and
streamwise pressure gradient.

following a change of surface
vice versa with and without a
The results show that the change is associated with the
development of an internal boundary layer starting at the point where the change

is
introduced and growing within the existing one.

At a sufficient distance downstream the
flow becomes that associated with the downstream surface condition. Schofield
(Reference 3.17) has made an analysis of the available data and relevant theoretical
work and his main conclusions may be summarised as follows,

Within the boundary layer close to the wall a length scale z can be determined by
writing

u/ug =A Inly/z). 3 (23)

For the boundary layer on a smooth wall equations 2(11) and 3(23) lead to
_ 1/2
z= (Zcfe) (u/ue) exp (-B/A) 3 (24)

and for a rough wall equaticns 3{12), 3(15) and 3(23) lead to

3 (25)

If we write §; for the new internal boundary laver thickness then Schofield found
that the available data were reasonably fitted by the empirical relation

0.92
b, /2, = 0.18(X /2, 3 28)

where zZ, is the value of z downstream of the change and xs is the streamwise distance
from the point at which the change occurs. This proved to be a somewhat better fit to

the data and easier to use than a formula previously derived by Townsend (Reference
1.,18) for zero pressure gradient.

Almost immediately after the change the internal boundary layer shows a logarithmic
region of velocity distribution but close to the point of change the slope and intercept
of & Claugser type plot can only be made consistent with other methods of inferring the
skin friction if the quantity A, normally constant being the inverse of the Von Karman
constant, is assumed to vary there, This is not unexpected since immediately after the
change begins the turbulence characteristics and structure still reflect

in large
measure the upstream conditions Conseguently,

the ratio of the eddy stress to the mean
velo:ity gradient, and hence the mixing length ? , will differ from that to be expected
in a developed equilibrium turbulent boundary layer. Since A = y/f near the wall, the
guantity A (and hence the von Karman constant = 1/A) can also be expected to differ near

the rxoughness change from its value further downstream, However, such differences be-

come insignificanc within a few boundary layer thicknesses downstrecam of the change, al-

thoegh the surface shear stress may take several boundary layer thicknesses {(about 15)

to achieve the dowrnstream equilibrium value. The surfage shear stress sometimes shows a

non-monotonic behaviour cluse to the point of roughness change.
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4, DISCRETE ROUGHNESS

In spite of much contrary effort by aerodynamicists, the external surfaces of air-
craft are marred by numerous discontinuities and excrescences. Many of these, such as
pitot tubes and certain types of antennae are essential to the aircraft mission and must
protrude from the surface in order to function. Others are a result of compromises for
economy of manufacture, and are in a sense deliberatelvy chosen tather than their
smoother, but more expensive alternatives. The process of arriving at these compromises
is very inexact because of the dearth of information on the many types of surface
imperfections which may be encountered.

Wind tunnel experiments in the years preceding World War 11 provided systematic
data on the drag of the types of roughnesses which were at that time most offensive.
This work was inspired to a great extent by a 1929 paper (Reference 4.1) by B. M. Jones
titled "The Streamline Aeroplane” which focused attention on thbhe drag components of
airplanes which could be eliminated as opposed to those which are unavoidable. ™"Fluid
Dynamic Drag" by Hoerner (Reference 4.2), the first edition of which appeared in 1951,
presents a comprehensive review of drag due to surface roughness as well as from other
sources,

More recently a number of experiments have been completed, largely by the RAE,
updating the basic data on discrete roughness to the flight conditions (Reynolds number
and Mach number) which are pertinent to modern aircraft, and utilizing recent
developments in boundary layer theory to provide a sound basis for correlation and
application, Sections 2 and 3 have reviewed the boundary layer theory and its
implications regarding drag due to roughness. This section will review a number of the
available data sources to show, where possible, the correlation of the older data with
that mcre recently becoming available, and to show the areas in which information on
this subject is still sparse, or weakly substantiated.

4.1 General Considerations

The net drag increase due to surface roughness results from a fairly complex
combination of interacting phenomena which might be listed as:

o Pressure forces on the protuberance itself.
o Changes in the local surface shear forces forward and aft of the protuberance,
o A modification in the development of the boundary layer downstream of the

protuberance,

[} Potential separation due to the added disturbance.

Since all of these phenomena can be influenced by pressure gradients in the flow
about the basic body, it is apparent that the real drag increase can be highly
configuration dependent. Practical utilization of general data on this subject demands
therefore that experiments be performed with the roughness elements in the total flow
field in which they are being considered, or that the unigue conditicns of the flow
field can be adeguately accounted for. Fortunately, a number of these effects are small
enough to be ignored and others can be handled analytically. Most tests to obtain basic
data on roughness drag are therefore conducted on flat plates in a wind tunnel and are
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applicable to a wide variety of airplane applications. Methods for extending these
results to arbitrary pressure distributions will be discussed in Section 5.

In some instances, References 4,3 to 4.5 for instance, the drag of roughness
elements is determined by measurements of the drag of flat plates of limited extent with
and without the element attached. The difference between these measurements represents
therefore the forces acting on the element plus the difference in skin friction on the
plate ahecad of and behind the element. 1In other cases such ag Reference 4.6, pressure
digstributions on the element are integrated to obtain the drag. These two types of data
are generally used interchangeably. The change in skin friction on the measuring plate
is probably small in comparison with the direct force on the element, but such data
could be applied with greater confidence if more were understood regarding this
phenomenon and if more were known about changes in skin friction downstream of the
plate,

In some few instances, the effect of local pressure gradients has been determined
for roughness elements, In Reference 4.6 for instance, it was determined that the
Fressures on the upstream face of a disturbance consisting of a spanwise plate erected
on a wind tunnel wall were unaffected by changes in local pressure gradient. The net
drag was changed by as much as 25% however as a result of changes in base pressure when
tested in adverse pressure dgradients. Only isolated instances of data showing pressure
gradient effects exist in the literature,

The adverse pressure dJradients which must exist on the after portion of closed
bodies can also produce significant effects on the total drag contribution of roughness
elements. Nash and Bradshaw (Reference 4,7) present an analysis showing that the drag
contribution of such roughness can be magnified by up to 3 or 4 times for downstream
pressure gradients which might exist on reasonable airfoil shapes. In Secticn 5 their
analysis is discussed in more detail and some results are presented showing that
exceptionally large magnification factors can arise for roughness on sensitive parts of
a high lift multi-component airfoil.

There exist in the literature several collections of data on roughness effects, and
in some cases data have been generalized to provide prediction technigues. The data
sheets provided by the Engineering Sciences Data Unit in the United Kingdom and the
Datcom in the United States include examples of the latter, Since these data sources
are widely known and generally available, they are not referenced in detail here, The
data presented herein in some cases provide an independent evaluation of some of the
same information presented in those sources.

4.2 1Individual Excrescences or Protuberances

This section will consider those individual, local surface disturbances such as
fastener heads, protruding functional devices, and holes as opposed to items such as
skin joints which span large percentages of the wing span or chord and which will be
taken up in a subsequent section. By far the largest number of surface imperfections on
aircraft skins are caused by the fasteners which provide structural attachments. When
installed properly, the drag of each such rastener is miniscule, but their large number
causes them to become an important consideration.

4.2,) Fasten2r Drag

several different types of data on drag caused by structural fasteners are

available in the literature.




PRI

N

0y

M e v e

s

'i

-

o One type is based sn some of the early work done by Schlichting and associates
during water channel and wind tunnel tests to establish the “ejquivalent sand
roughness" concept referred te in Section 3.3, Following the Nikuradse
pipeflow experiments, Schlichting (1937) tested a number of rough plates with
distributed roughness where the geometry of the roughness elements was
controlled. He varied the c¢ross—sectional shape and density of wvarious
roughness elements and established the equivalent height of sand roughness for
which the drag would be equal for each configuration. Some of the shapes
tested by Schlichting are crude representations of fasteners: i.e., spherical
segments, cones, and indentations representing flush rivets.

o Wind tunnel and flight test data on airfoils and wings having various fastener
patterns represent a second type of data available on fastener drag. These
experiments were done during the 1930's and 40's. The results tend to be
configuration~dependent. However, they are practical examples of fastener

drag.

[} A third type of data for fastener drag is based on the work of Wieghardt
(1942) and Tillmann (1944). 1In these experiments, systematic variations of
Jeometric parameters were carried out, Drag is based on the "single-element®
or the discrete roughness approach. These data have more recently been
supplanted by the results of tests by Gaudet and Winter, Reference 4.5, for
instance,

Three basic methods for calculating the drag of fasteners were determined from the
literature and a tourth approach was developed from « corielation similar to those made
recently by the RAE tor the drag of two-dimensional steps. The latter method is
suggested since it follows from the same logic that led the RAE researchers to their
approach; the drag of excrescences which are deeply immersed in the boundary layer
should be related to the inner boundary layer parameters.

Method A

This method was detailed by Young in 1939 (Reference 4.8) and is an empirical
formula aprroach. The cmpirical formula is attributed to the previous work of
Schlichting in which drag ie correlated using velocity at top of the rivet, and a
further observation by Young that the drag coefficient for rivets is directly
proporticnal tc the height-to-diameter ratio (h/d). This method is a guick (rough
order of magnitude) apprcach.

Method B

This method follows from the distributed rcughness data of Schlichting and would be
appropriate where the coverage is sufficiently dense to be considered fully rough,
However, a modification to this approach is described for cases where there is
doubt as to its applicability.

Method C

The third method is based on the experimental work of Wieghardt. This is
essentially the methoad described in Hoerner where an "independent” drag ccetficient

s g
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is found based on the frontal area and the affective dynamic pressure acting over
the rivet,

Method D
This method uses the Wieghardt data of Method C, but the drag coefficient
correlation is based on the local skin friction and a Reynolds number based on the

roughness height and local friction velocity.

Five of the examples of "practical" fastener experiments were chosen (o evaluate

the prediction methods. The results are shown in Figure 4,1, Essential details of
these five data sources are given below:

DRAG INCREASE

R MR

AC,. = DUE TO FASTENERS O WILLIAMS - 1" PLATE (REF 4.9)
0 O WILLIAMS - NACA 0012 (REF 4.10)

% Sw A YOUNG - NACA 2477 (REF 4.8)
vV HOOD - NACA 23012 (REF 4.11)
< FENTER - PLATE, M=2,23 (REF 4.12)
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Figure 4,1 Fastener Drag Cocrelation
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Williams 1" Plate, Reference 4,9

Flat plate with rounded nose and tapered trailing edge. Tested with 150 rivets on
each surface spaced at 1,5", Reynolds numbers from 1 x 106 to 24 x 10% on 2 foot

chord,

Williams NACA 0012, Reference 4,10

5376 simulated rivets on 8-1/4 inch chord two-dimensional airfoil, Reynolds number

to 9 x 10°,

Young NACA 2417, Reference 4.8

Glove added to aircraft wing. Tested with various roughness elements. 36, 43, or

49 rows of rivets spaced 1" chordwise and 6" spanwise, Reynolds numbers to 18 x
6

107,

Hood NACA 23012, Reference 4,11

2500 Brazier head rivets on 5 foot chord two-dimensional airfoil, Reynolds numbers
6
te 1B x 107,

Fenter Plate, M = 2.23, Reference 4.12

Flat plate in wall of wind tunnel with 117 simulated rivet heads. Reynolds numbers

to 20 x 10°.

Estimates of the drag caused by these fastener arrays were made using each of the

four methods outlined above. The following paragraphs discuss the basis for each of the

estimation methods,

4.2.1.1 Method A. Young (1939), Reference 4.8

He refers to Schlichting's work which suggests that the drag of a rivet is given by

2
D=C (L/fevu)t 4(1)
R f h
R

where Dp = drag of the rivet

Ceg = coefficient, function of rivet shape

R

u = velocity in houndary layer at height h of the rivet

£ = frontal area of rivet
Young shows several points which substantiate that Cf = 1.5 (h/d).

R

He goes on to derive equations for the drag increment due to rivets for a wing:
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A cDR =4.05 —sh- N (%) (1 +1.5(t/c)) @

and fuselage:

27

2
AC =4.05(;‘—)N (—t-) 4(3)

Dy

These equations are developed using approximations for boundary layer thickness and
for the supervelocity on the airfoil surface due to thickness ratio, t/c.

Young's method is an application of the "independent™ drag coefficient concept

where an overall coefficient, in this case Cf . was chosen., His function
R

Ce = 1.5 (h/d)

4(4)
R

was derived from some of the early low Reynolds number data and conseqguently the

correlation shown in Figure 4.1 is quite good. Since the method is independent of
Reynolds number, the method doe: not always correlate well for data where the Reynolds
number was wvaried during the experiment, This method might be considered useful for

quick estimates and is applicable only to brazier-head fasteners.
4.2,1.2 Method B, Schlichting (1936), Reference 4.13

The primary data base for establishing the effects of density for roughness

elements was developed by Schlichting in an effort to relate practical examples of

manufacturing roughness on ships to the sand paper roughness experiments of Nikuradse.
He systematically varied the spacing of a number of roughness elements, some of which
are similar to fasteners, and determined the equivalent height of sand grain particle
which matched each roughness confiquration, These results can be used,

in conjunction
with the sand grain roughness data of WNikuradse, to find the drag

coefficient feor
fastener problems where the coverage is dense enough to be considered distributed

roughness, Figure 4.2 shows the Schlichting data for each configuration tested. These

results have been collapsed into a more yeneral curve relating density and the roughness
ratio, ks/k, in Figure 3.10.
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Figure 4.2 Proximity Effact on Equivalent Sand Roughness
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Procedure for Implementing Method B:

Since, in general, the entire arca may be covered by roughness, some assumptions
regarding the flow conditions and apportionment of areas for each segment must be made.
The following example illustrates the recommended procedures:

..___@_——.—1

D ol

/,,_——7
d
/

"

Pl

.._1,.1L:.4__12__—l

- ; - 2 —oo-|
Zone 1 = Lawinar Flow
Zone 2 = Smooth Turbulent Flow S = TOTAL
P pLATE
Zone 3 = Rough Turbulent Flow AREA
RNF = Freestream Reynolds Number/Foot

The incrementai drag due to roughness is calculated by first calculating the total
drag for the mixed flow case and then subtracting the drag for an assumed "smooth-flow"
case, For the mixed flow case, the total drag is found by determining the total
momentum luss at the trailing edge. This reguires knowledge of the effective origin of
the flow for each segment, illustrated by the dashed extrapolations of Segments (2) and
(3) in the sketch.

An approximation to this case can be made by calcu ating the drag of each segment
geparately (as an isolated case) with the origin assumed to occur instantaneously at the
beginning of the segment, Thus,

For Zone 1, 4()

R' Ty x (RNF)

M
o, _(CFI )k
eminar o
1
where (C ) is the laminar skin friction coefficient
laminar R
)
af Reynolds Nunber = R,
For Zone 2, 4(6)

Ry ={1 ) x (RNF)

CD = (C ) x .@
2 smooth L
RZ

where (C ) is the smooth turbulent flow skin friction coetficient
smiooth R
2

«t Reynolds number = R2
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For Zone 3, 47)

Ry = (4 3) x (RNF)

C =(CF ) x(%z)

where

(C ) is the rough turbulent flow skin friction coefficient

R

Froug h

3

at Reynolds Number = R, and at the squivalent sand roughness,

3

The total drag is 4(8)

CD =C
mixed flow 1 2 3

For the “"all-smooth" case, Zone 2 extends to the trailing edge and the drag is
similarly calculated for two segments.,

Finally, the incremental drog due to roughness is 4(9)

rough mixed flow smooth

Since this method is based on the assumption that the fasteners are uniformly
distributed over the area covered, the use of Figure 3,10 may not provide an accurate
prediction where rows of rivets are spaced further apart spanwise than in the flow

direction as illustrated below;

Figure 4.3 Pro-Rated Area Concept

In this case, a better correlation may be possible by using a pro-rated area based
on a strip of width equal to three times the diameter of the fastener. It is assumed
that no drag increase occurs in the area between strips, This was done for several of

the correlations in Figure 4-1 and as can be seen, an improved correlation was possible.

P
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4.2.1.3 Method C., W.eghardt (1942), later Hoerner

This method refers to the general approach of using certain cxperimental results,
as published, for finding the CDm for a specific type of fastener. Here, cnm = p/qf
where q is the mcan dynamic pressure in the boundavy layer up to the height of the
tastener and t is tastener frontal area. Since the Wieghardt tests (which were
supplemented by Tillmann) (References 4,3 and 4.4), contain the largest available
systematic data base, his name was chosen to identify this methed. These results also

represent the basis for that portion of Hoerner's work covering fastener drag.
Several different investigations were made and these will be discussed separately.

(1) Round-hcad and flat-round fasteners

Wieghardt tested three different height-to-diameter ratios (h/d) and varied the
height and Reynolds number to obtain the data sheown on Figure 4.4 (Wieghardt Figure 45
data). These data show a decreasing Com with increasing Ry and this trend is counter to
the trend observed with other roughness elements, Hoerner explains that this is similar
to the “"critical Reynolds number" behavior of spheres. The height relative to boundary

Rx h/d Saurce
0 2.7 10° 0.2 Wieghardt Fig. 45 o
o 0.3 (Ref. 4.3)
a . 0.5
® 7,110 0.2
- 0.3
A 0.5 * #
v 7.2.-105  0.01-0.07 Fig. 3% o e
x 5- log Q.25 Tillmann (Ref. 4.4) T e
+ 510 0.42 ] (Hex Head)

Figure 4.4 Drag of Round and Flat Hecd Fasteners vs Reynolds Number

San,
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layer thickness, h/&d , for the bulk of these configurations was large (.l-—+1,5) so that
the behavior would be expected to approach that of freestream isolatec bodies - thus a
decreasing drag vs. Reynolds number could be experiznced at some Reynolds number. It is
#lso observed that results for the lowest h/§ tend to agree with the data takem by
Wieghardt for small cylindrical head shapes (Wieghardt's Figure 39 data). Thus, for

practical applications, whe'e the h,/8 would be guite small, the C might be expected to

Dm
be larger than indicated by the parametric results, perhaps bounded by the dashed line
ir Figure 4.4, Howaver, for the correlations shown in Figure 1 for Method C, the

parametric results were used.
(2) Cylindrical-head bodies

Wieghardt tested a large range of sizes of cylinders normal to the flow, Those of
large diameter to heigut ratio (d/h > 10) and small h/§ are considered representations

of rivet heads. These are shown in Figure 4.4 as Wieghardt's Figure 39 data. A linear

b VS- Rh is indicated for these data. It is interesting to note that

these data, when plotted in the RAE format (CD/Cf vs uTh/v), agree very well with the

variation of ¢

drag of forward facing steps, (see Section 4.2,3.1).

(2) Countersunk cylindrical-head

Weighardt's results for a simulated countersunk rivet are shown in Figure 4.5,
Since the h/§ values indicated by cthese data are very small, h/h = ,003 - ,015, the

overall accuracy is suspect and these results are only shown as an indication of the
2

trends and relative magnitude. Here CDP =/\D/qe %-d

Figure 4.5 Drug of Countersink Rivets
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(4) Special shapes (Three-Dimensional)

Hoerner (Figures 13 and 14) shows single "independent" drag coefficients for a
number of 3-D protuberances, He attributes these to Wieghardt and Tillmann. Some of
these shapes (c¢ylindrical, round-head, flat-head, flush rivet and bolts) are the same as

reported above and he has selected some kind of avérage or nominal CDm. One shape, the
ﬂ hex-head nut was tested by Tillmann separately and again Hoerner selected a typical CDm'
Some of the other shapes could not be found (screw, bracket, pins, etc.). In general,
the drag coefficients for these different shapes can be approximated by the line
previously discussed for cylindrical head =shapes (Figure 4.,4). The data for Method C
b shown in Ficure 4.1 were estimated u3ing Figure 4.4 anc¢ the multiplication factor of
’ Nash and Bradshaw, reference 4.7, (see also Secticn 5,1), The correlation is generally
quite good although the Williams flat plate data and Fentex supersonic data are much
lower than the estimate, No multiplicaton factor was applied to either of t(hese
estimates.

E 4.2.1.4 Method D. Modified Wieghardt Correlation
F In order to examine the behavior of Wieghardt's rivet drag results with respect to

the newer correlation methods of the RAE research, the round-head fastener data of
Wieghardt (his Figure 45) were expressed in the form

+
=f(h 4(10)
Cpe fC =T (h)
E +
E where h™ = u,. h/v = roughness Reynolds number, and Wieghardt's drag coefficients were
P . _ .
E converted to LDe = D/qe fe'
3

The concept of relating the drag of disturbances immgrsed in a turbulent boundary
- layer to the law of the wall similarity parameters was discussed in 1967 by Good and

Joubert, Reference 4.6. Their measurements of pressures on two-dimensional plates
perpendicular to a wall showed that the plate drag was correlated very well by relating
CD1 to u, h/v for plate heights up to 0.586. The forward-face pressure forces, in
fact, correlated well for heights greater thand . A velocity defect concept was evolved
which properly correlated the plate drag for all heights tested. These concepts have
been found to be very powerful in correlating drag measurements for a variety of
excrescences which are smaller than the boundary layer thicYness, as is generally the
case for surface imperfections.

The results are shown in Figure 4.,6. The tendency for the drag coefficient to

decrease with increasing keynolds number still predominates and a linear vaciation of

CDe/Cfe vs log (h+) is indicated. The effect of shape, through the height-to-diameter
. +

ratio, is obvious at the higher roughnecs Reynolds number. For the lower values of h ,

there is a tendency for the data to follow the characteristic shape of the RAE data for
3teps and ridges, In fact, the round ridge curve appears to act as a cut-off for the
low Reynolds number data tor h/d = 0.5.

The existence of a cut-off is reasonable when consideration is given to the RAE
results. The step and ridge dray coefficients are based on frontal area, normal to the
airflow, as are the Wieghardt rivet drag coefficicnts, Both are also based on
freestrecam dynamic pressure. Thus, it is unlikely that the rivet drag coefficient could
significantly exceed that of a 2-D step or ridge of the samc height. Consequently, the
RAE round-ridge curve is assumed to be the correct variation for values of h' below the
point ©f intersection with the constant (h/d) lines of Figure 4.6.

o
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WIEGHARDT DATA (REF 4.3)
k=27 7.1 XI10

o ¢ h/d=0.2

a w h/d=03

A rFy h/d = 0.5
'50 —T -7 T T T T =T T
Incompressible
Wintar / Gaudet
Data (Ref, 4.5)

100 + W—"AA o

50~ O = :

0 I A A i S ke, L s
100 200 300 401 600 800 1000 2000 3000 4000
h + U'r h/u

Figure 4.6 Compcrison of Weighardt Data for Round-head Fasteners with
Winter/ Gaudet Data for two Dimensional Round Ridges.

Some additional data for rivets having a h/d equal to 0.2 are shown in Figure 4,6a.
As shown, inrcrease of h' to values above about 2000 causes a reversal in the variation
of CDe/Cfe and a subsequent rather steep rise, The phenomena underlying these complex
variations are not understood,

For the comparison shown in Figure 4.1, data from the correlation of Figure 4,6
were used and increased by a multiplication factor based on the concept of Reference
4.7. In summarizing the comparisons of Figure 4.1, none of the methods stands out
clearly from the data presented, From a consideration of the fundamental correlation
shown in Figure 4.6 and its compatibility with excellent correlations for other types of
protuberances, shown latex, Method D is preferred, The failure of the supersonic data
to correlate is perhaps not an cutstanding drawback and the flat plate data of Williams
might be improved slightly if a magnification factur cvalculated from Refevence 4.7 werc
applied.

4.2,2 Two-Dimensional Cylinders

Since the drag of many aircraft excrescences can be approximated by data on
cylindrical models, these models have been studied extensively, While the items for
which these results are most useful are generally of high aspect ratio, cylinder data
for the complete range from sub-boundary layer lengths to infinite aspect ratio are
included in this section for continvity. The small-height data are included also in the
section on fastener drag.

4,2,2.1 Circular Cylinder Drag

The circular cylinder has been generally uscd ag the basic model for cylinder drag
research, starting with the two dimensional, or infinite length cylinder. For incom~
pressible flow, the drag of a two dimensjonal cylinder is predominately a function of

Reynolds number, normally expressed in terms of the cylinder diameter, Rd'
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Figure 4.6a Drag of Rivets - Subsonic Speeds

The relationship between cylinder drag based on frontal area, CDﬂ,and Reynolds
number, Rd' has been extensively verified such that the 1esults are considered
classical. Hoerner's compilation for this case, Reference 4.2, is repe.ted in Figure
4.7 for Rd ranging from 0,01 to 108. The critical Reynolds number, where laminar sep-
aration transitions to turbulent flow, is seen to occur at Rd: 4 x 105. An expanded
version over the range from Rd = lO4 to 106, from Reference 4.14 is shown in the upper

part of Figure 4,7.

4,2,2.2 Roughnuss Effects

The existence of uniform roughness on the cylinder or turbulence in the freestream
tends to cause the transition to turbulent flow to occur at a lower Reynolds number and
the cylinder to have a higher supercritical drag coefficient. Typical results from
Reference 4.2 are shown in Figure 4.8, where the degree of roughness is expressed as the
ratio of sand-grain size, k, to cylinder diameter,

4.2.2.3 Cross-Sectional Shape Variations

The effect of cross-sectional shape on 2-D cylinder drag was investigated tor a
number of conventional shapes by Delany, Reference 4-14. The results for the
“sub-critical" Reynolds number vanges are summarized in Figure 4.9. Rounding the
corners was determined to have a profound effect on the sub-critical drag coefficient as
well as the supercritical Reynolds number effects. Since, for most practical aircraft
applications, the Reynolds number for cylindrical components would be subcritical, the
effects of rounding on the supercritical drag variation is not included here.



108

== e e
— e et
ey St =
nt o
= b ]
T A
T

5/6 789
L

[ iu

I
4

%1

It

ilil

i

I

[y Y YY)

|

i
g

I

i

|

SOURCE: DELANY (
\l
1
alt

\
l
‘Frabitin

TTOITIT T

|

i
Jf-

LRIt

78¢,
1

6
'I||

3
[

il ‘,0

5
i
Reynolds MNumber on Diametsr, Ry

sl

=== S

-

|ADEDEM SRR RO HROA WP SIUIIMIRLS SUpI TR SIS 5

[ DA S SOV RO O S
o iy T T eI T T T

i

EHIH

{y

il

I
1
it
Jytant

gl

Uil

Ll

9

~

iy
Sy
L1l

r, pg 3=
L

4

: Hoerner

bt bl

ﬁﬂ'fh,f,’i"ﬁi[! T B T T R B B e S P I
Lo
i

P

IOOOJ
00

10

=V _d

R

A\

the Flow

Cylinder Normal to

Figure 4.7 Drog of a Circular

Log (Rg)

Figure 4,8 Effect of Surface Roughness on the Drug of o Circular Cylinder




64

SOURCE: NACA TN 3038, 1953
DELANY, N. K. & SORENSEN, N, E,
LOW-SPEED DRAG OF CYLINDERS OF VARIQUS SHAPES

MODEL; CIRCULAR, ELLIPTICAL, RECTANGULAR, DIAMOND AND
TRIANGULAR SHAPED CYLINDERS SPANNING A WIND TUNNEL

TEST COND1ONS: LOW SPEED, RN UP TO 2.3 X 10° PER FOOT AND
PER DIAMETER (1 FT DIAMETER)

CORNER CCRNER
FINENESS RADIUS (CD ) FINENESS RADIUS (CD)
RATIO RATIO o RATIO RATIO b
FLOW l/w /w SUB-CRIT, I/w t/w SUB-CRIT.
O 1.0 .5 1.0 021 1.8
<> .5 .083 1.7
167 1.7
O .5 - 1.6
.015 1.5
<> 1.0 118 1.5
Q 2.0 - 6 .235 1.5
.042 1.1
.021 2,2 2.0 167 1.1
I:l 5 .083 1.9 <> .333 1.1
.25 1.6
.021 1.2
Q 1.0 .083 1.3
021 2.0 .25 1.1
D 1.0 67 1.2
.333 1.0 .021 2.0
[> 1.¢ .083 1.9
.25 1.3
.042 1.4
2.0 167 7
[ .5 4

Figure 4.9, Effect of Cross-Sectional Shape on 2-D Cylirder Drog

4.2.2,4 Cylinder Inclined to Flow {(Wires)

For a cylinder inclined to the flow direction, such as a tow cable or antenna wire,
Reference 4.2 has rchown that the drag may be related to the basic cylinder by the
cross—flow principle, Under cross-flow conditions, the net force normal to the cylinder
is orly related to the velocity component normal to the basic cylinder axis. At some
flow angle, a«, the effective velocity component is Vo Xsin a and the dynamic pressure is
g X sinza. Thus, the normal force coefficient, based on area along the cylinder axis and
freestream g, is

CN=CDTT xsin2a 4011

and the drag coefficient in the freestream direction is

, . 3
\CD) =Cansm n 4(12)

inclined
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For a circular cylinder, at sub-~critical Reynolds numbers, the drag coefficient
would be

<) =1.0si¢ 4(13)

inclined

where the 1,0 value for CD# is shown on Figure 4.7. Reference 4,2 points out that t =2
cross-flow principle cannot be applied for superxcritical Reynolds number conditions. A
constant CDn value of 0.2 is vecommended for sweep angles up to 50 degrees.

1t must be kept in mind that the above argqument is based on a drag coefficient
defined using a constant area as viewed along the cylinder axis. Some later data
(Sections 4.3,1,2.3 and 4.3.2.3) consider a drag coefficient defined using prcjected
frontal area, in which case the drag coefficient varies as sinza.

4.2.3 Finite Length Cylinders

One of the first comprehensive studies of finite length or protruding cylinders was
accumplished during the systematic investigation of surface irregularities by Wieghardt,
Refereacn 4.3. Through use of a moveable floating-element balance technigue, and by
varying geometric parameters, he produced a very useful data base for the drag of
numerous aircraigc surface irreqularities, In particular, he determined the effects of
height, diameter and Reynclds number on circular cylinders which are small relative to
the local boundary layer, These results were obtained at incompressible flow conditions
and sub-critical Reynolds numbers.

More recently, Gaudsit aad Winteo at RAL, Reference 4.5, and Pallister at ARA,
Reference 4.15 have investigated Mach numver ag well as Reynolds number and geometry
effects on protruding cylinders.

This work bridges the gap between the infinite cylinder (free of tne boundary
Jayer) and the finite cylinder, deepl, immersed in the boundary layer, as studied by
Wieghardt,

For drag estimation purposes, three categu-ies of finite c¢ylinders are
distinguished:

[} The first category pertains to cvlinders which &t¢ deeply submerged in the
boundary layer. For small diameter protrusions {similar to fasteners), the
drag estimation is based on a correiation of Wiegharat's data.

Q The second category also pertains to cyiinders whichk ave submerged in the
boundary layer but which extend up to the edge of the boaadary layer, Drag is
estimated with the drag defect method outlined in Reference 4.,5.

o The third category contalas vchose cylinders wihich procrude into the
freestream. The correlationg of Reference 4,5 and 4.15 are alsu uged for drag
estimation for these cases.

4.2.3.1 Cylinders Deeply Submerged in the Poundary Layer

The Wieghardt results fcr cylindrical bodies are summarized in Figure 4,10, Two
types of geometric series wer: tested: one where the height-to-diameter ratio, h/d, was
less than 0,07: and the other wheve h’3d varied from 0.05 to 4.0. The Com values ave
based on the cylinder frontal area anrd the average dynamic pressure acting on each
¢ylinder. These data were converted to the form CDe/Cie vs h' and are compared tv tha
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1.6 S -
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Figure 4.10 Drag of Cylinders Immersed in the Boundary Layer - Corralated
Wieghardt Method

incompressible results of Reference 4.3 for various 2-D excrescences in Figure 4.1l1.
This comparison shows that, for h/d < 6.5, the drag of these small cylinders is
essentially modeled by the 2-D forward-facing step draq. Above h/d = 0.5, the CDe
increases substantially and is not modeled by this method.

4.2,3.,2 General Method tor Cylinders in a Turbulent Boundary Layer

The method described in this section stems from the attempt in Reference 4.5 to
determine a drag defect function for cylinders, similar to the incompressible 2-p bluff
plate function of Good and Joubert, Reference 4.6. Mach number dependency was found .n
Reference 4.5 and a single drag defect function could not be established. Consequent y,
a series of correlation functions are required. The subsequent investigations of
Pallister, Reference 4.15, werce directed at supplementing the RAE data by providing a
better coverage of the transonic speed range. These later results do complement the RAE

data in sowe respects, but also highlight the large difference possible in the transonic
range.
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(Ref. 4,3)
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® Wieghardt (h/d > 0.5)
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fa L
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100} Results

Winter/Gaudet
(Ref. 4,5)
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Figure 4.11  Comparison of Incompressible Cylinder
Drag with RAE Results for Various Excrescences

Frow the baslc test data tor each Mach number, plots were made of CDe vs 8/h and
extrapolated to determine the drag coefficient of an equivalent infinitely long
cylinder, CDOQ . The results are shown in Figure 4.12. The constant slopes obtained for
CDU) V3 Rd enables a correction for Reynolds number to be made and the data plotted
against Mach number, Figure 4,13. Data from Pallister and others are included on Figure
4.13. Prior to Pallister's results, the Mach number effect through the transonic range
was not well established. His results confirm the general shape determined earlier by
Welsh and the levels at M = 0.8 and M i 1.4 obtained by Winter and Gaudet.

The next step taken in Reference 4.5 tc establish the drag function was to examine
the ratio of the drag of & cylinder of heignt, h =0 , where § is the boundary layer
thickness, to the drag of an infinitely long cylinder. Figure 4.14 compares results
from References 4.5 and 4,15. Without the later results, the RAE observed that within a
small range, Cl)s was proportional to Cpe 2t a given Mach number. A drag defect function
was then defined in the form

“ps " “on .
C‘t 6
whers CDﬁ = drag ceefficient of a cylinder with a height equal to the boundary
layer, & .
CDh = drag coefficient of a cylinder with arbitrary height,

Gaudet and Winter's results are shown in Figure 4.15. Winter and Gaudet could not
rind a function independent of Mach number and consequently concluded that drag could be
estimated by use of Fijures 4,13, 4.14, and 4.15.
unavailable iptormation for transonic mach numbers.

Pallister's data provide previously
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Figure 4,13 Comparison of Circular Cylinder Drag Measurements
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Figure 4.15 Drag Defect Function for Circular Cylinders
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4.2,3.3 Cylinders Conpletely Immersed in Boundary Layer

Following the suggestion of Gaudet and Winter, the drag of cylinders completely
immersed in the boundary layer can be found from

CD = CD 5 - Fx Cf 4(15)

where c
o [%.]
¢, = * o
D CD
® Figure 4,14 Figure 4.13
M e E (M, bs)
¢ 87 Figure 4.15

4,2.3.4 Cylinders Extendinyg OQutside the Boundary Layer

For cylinders with a height greater than the local boundary layer thickness, the
drag is found by pro-rating the submerged and exposed areas with the proper drag:

The drag of the submerged prrtion is

§
ny (CD5 )
and for the exposed portion the drag is

0=,

The total drag for cylinders excending into the freestream is thus

S el R A 406)

where CDa and CDoo are determined from Figures 4.13, 4.14, and 4.15,

4.2,4 Stub wings/Antenna

Although the drag of protrusions such as stub wing-like antennae tend to be highly
configuration oriented, recent work by Gaudet/Winter, Reference 4,5, and
Marshall/williams, Reference 4.25, has led to a few generalizations which are useful for
some applications. In Reference 4,5, an attempt was made to analyze test results on a
series of stub wings of varying span along the lines of their cylinder drag defect
function approach (see Section 4.2.2.1). This was only partially successful.

Additicnal data were made available through Reference 4.25 which can be supplementary to
the RAE results.

For bodies protruding into the freestream, the Reference 4.5 approach assumed that
the drag can be determined by:

=0
o= oy *01- 16, )

where
CD6 = the drag of the body with a height equal to the boundary layer thickness

Cph = the drag of the body with infinite length
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For most airfoil or streamlined shapes used for stub-wing antennas, the value of
Cpe WOuld be known by converting the zero-lift section drag coefficient foi the actual
airfoil used, to a coefficient based on frontal area,

The value of Chs would not normally be known or obtainable from sources convenient
in design work. Data in References 4.5 and 4.25 would indicate that typical values cf
Cpy /Cp, are approximately 0.85 at subsonic speeds and 0.7 at supersonic speeds.

For excrescences, such as stub wings, totally submerged in the boundary layer,
generalized results are not available, Reference 4.5 utilized the drag defect function
such that

= - 8
CD CD6 Ffo 4(18)

and found that the defect function, F, varied with Mach number and h/&§ in 2a manner
somewhat similar to that shown for a cylinder, Figure 4.15 of Sectior 4.2.3,2, but with
the wvalues scaled by a factor of 0.75, hAgain, this was applied to the supersonic
results only. Reference 4,25 offered that a better method would be to account for the
reduced dynamic pressure through the boundary layer by integrating:

hs )
cD=chx—f\—'( ()" d0/8) 409)

o

This method relies on knowledge of the existing boundary layer profile and actually is a
version of the Hoerner effective dynamic pressure method. Thus, no improved general
method beyond the two described above is available,

4.2.5 Drag of Holes and Surface Cut-outs

The data base for the drag of holes is taken from two series of experiments -~ one
carried out in Germany during the period 19345-1942, References 4.3, 4.4, and 4.16, and
the other being the recent British work, References 4.17, 4.5, and 4.15. Although these
experiments cover a wide range of geometric and flow parameters, it has not been
possible to generalize the results into accurate drag predictiom methods, In fact,
Reference 4.5 concludes that because of the complexity of the three-dimensional flow
pattern within a hole, it is not likely that a simple analysis will produce methods for
describing all the possible combinations. In the special case of circular heles,
Reference 4.17 shows a reasonably good correlation based on the kind of analaysis
successfully used by the British for many types of excrescences,

Careful scrutiny of all the various experimental results shows that the drag of
holes is only a weak function of scaling parameters (Reynolds number, skin friction,
boundary layer characteristics). Geometric factors, such as depth and hole aspect ratio
(width-to-length ratio) tend to predominate. Consequently, the use of the actual test
results as reported becumes a valid candidate as a method of estimating hole drag. For
several types of holes correlations have been derived which can be used for estimation
purposes.

Two basic categories of holes are identified by planform shape: those with a curved
planform (round or elliptical holes), and those with rectangular planforms. The latter
does not include slots or cut-cuts which are small relative to the boundary layer
thickness, These are covered jin Section 4.3.3.




4.2.5.1 Circular Holes

The early cxperiments of circular holes covered a large range of d/h ratios (sec
References 4.3, 4.4, and 4.lé6 for incompressible flow and were conducted at low Reynolds
numbers (Rx less than 7.% x 106). At these conditions, the drag was found to be
essentially independent of Reynolds number and a function of the diameter-to-height
ratio. A cyclical variation of the drag coefficient vs, h/d was cobserved which dampened
as h/d increased, see Figure 4.16. This cyclic variation is probably associated with
changing flow patterns in the region of the hole. Thus, with some geometries the
vortices that form within the hole remain there «nd the flow is relatively steady and
stable. The external flow then passes over an effectively smooth free surface defining
the upper surface of the hole and thc drag is low., For other geometries vortices are
continucusly generated by the hole and convect downstream as a wake; the drag
contribution is then high,
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0.04 — 4 Friasing (Ref, 4.16)

N O¢& Tillmann (Ref, 4.4}
2 Tillmann (Ref. 4, 4)
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Figure 4,16 Comparison of Some Early Experimental Results
on the Drag of Circular Holes

Subsequently, the experiments of References 4,15 and 4.17 have indicated a moderate
influence of Reynolds number as well as Mach number effect, These data confirm the
cyclical nature of the variation with h/d and a correlation was made based on the

observation that a power law relationship exists beuvween the drayg ratio, CDP/CE' and thc

roughness Reynolds number (u; d4/v). Note that the drag coefficient for holes is
Cpp =/\D/qc5p where Sp is the planform area of the hole. This relationship takes the
form B

f ::r_d 4(20)
CDP/ Cf=A 1 3 }
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The value¢ «f B was found to be a function of Mach number, but the parameier A was
dependent upon buth h/d and M, and is the cvclical effect noticed in Figure 4.16, In
order to see¢ the degres 0t correlstion between the eariy low speed data and the latest
results, the correlation shown in Figure 4.17 was made, Assuming the low speed value

for B, given in Reference 4,17, values wore calculated for A,

A=(C. /Cix{u d/, )MB 4(21)
G’ 7t .

where values for C, end u, d/v were calcuiated fer the known test conditions for each
data source.

Considering the large ditference of test parameters between the early experiments
and the more recent tests, the general agreement shown in Figure 4.17 is very good, 1In
view of this correlation, a single method for calculating the drag of circular holes is
acknowledged, That method is as developed by the RNE (Reference 4,.17) and contfirmed by
ARA (Reference 4.15). Since the ARA experiments contain a more detailed evaluation of
Mich number effects and extend to higher values of h/d, the recommended approach is
based on the Reference 4.15 results,

The basic e *Lica is, from Reference 4.17,

u dl’B
2= _—T——-
CD/Cf A{ N ) 4(22)
where A = f (h/d, M) as shown in Figure 4.17 (Figure 26 of Reference 4.15) and B = £ (M)

shown in Figure 4,18 (Fijure 6 of Reference 4.15}, Por Mach numbers higher than M = 1.4,
the data of Reterence 4,17 can be used, but onLy ltor h/d < 0.33, Thesv latter results
are included on ltigure 4.19,
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Figura 4,19 Effact of Mach Number on Circular Hole Drag Correlation Parameter (A)

4,2.5.2 Holes wvith Elliptical Flanform

The only suvurce found for determining the effects of ellipticdl planform on the
drag of holes .s the early work of Friesing, Reference 4.16. In the case of elliptical
holes, Friesing only wvaluated configurations with the major axis of the ellipsec normal
to the direction of air flow. His results are shown 1n Figure 4.20,

Although these results are somewhat scattered, thece are several noticeable chacac-
teristics which can be used to m . ke some useful gencralizations. First, the <yclical
nature of the curve Cnp vs h/d for circular holes, observed in Frgure 4.16, is also
cvident tor the elliptical plaenform holes. This implies that the drag for the ellipti-
cal case may bo obtained by cerrecting civcular hole drag in some way. Since it is also
apprarent that the extreme peak in CDp for civecular holes, over the range h/) = 0,4 to
0.4, does not occur for the elliptical holes, a modified shape is necgessary [or this
porrion of the data.

Another useful characteristic observed 1s the somewhat consistent trend of
decreasing Cp, due to increosing the ratio of hole width to hole length, w/l. This
occurs for h/bL values 1less than 0.3, Above h/l = 0,8 the results are genevatlly
scattered about a mean line. Thus, for hf/) < 0.8, the ratio of the drag coefficients
for elliptical neoles to thalk fos a circular hole can be used to determine the re-
lationship between the tvo,
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Figure4.20 Drag of Elliptical Holes

It the very high values of drag coefficient at h/1 near .5 are discareéed and small
adjustments are made elsewhere, the curve for w/]l = 1.0 can be redrawn, as shown by the
dasned line in Figure 4.20, to be cne of a family wicth w/1 as parameter. Using this
dasned curve as a datum thc drag ratio CD Eilipiiual/cn Circular is very nearly a
constant for each value of w/1, The drag of elliptical holes can then he reduced to the

aashed curve multiplied by the ratio Cj Elliptical/CD Circulac on the top of Figure
4.20,

In summary, the drag coefficient for an elliptical hole is found from:

{a) Wl <08
4(23
Cpp) . )
C - Elliptica! x{(Cne )
DF Elliptical (CDP) Circular opl
where
“ory,
Ellix rical
—r—-’——— =f (wAl) - Figure 4,20
E';P Circuiar
and

(CDP) 1 =f (hA) - Figure 4,20

15
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Care must be exercised however to recognize that the dashed curve C is only a

DP1
fictitious datum rather than showing real values for circular holes. Some singular flow
condition within the hole apparently occurs for circular holes having a depth near 0.5 x
diameter which results in the very high drag values ghown in Figures 4,16, 4,17, and

4,20,
4.2,5,3 Holes With Rectangular Planform

The data base for holes with rectangular planform is scanty, consisting of early
data such as Friesing, Reference 4.16, and a few recent measurements contained in
Reference 4.5. As noted in Reference 4.5 very few generalizations can be made with
these resvlts because of insufficient combinations of planform aspect ratio and depth-
to-length ratio. In any event, the data have been plotted in the form of the drag
ratio, CDE/Cf' vs, the depth ratio h/l in Figure 4.,21. A mean curve has heen provided
for aeneral use.

__L{l L - 1 L L 1 DR, |
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B ! 01,6 101.6 -

127
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Figuie 4,21 Rectanguler Hole -- Drag os a Function of Depth Ratio, h/i

Mach number etfectz for a square and a rectangular hole configuratipn, obtained
from Reference 4.5 are shown in Figure 4.22. These results are obviously inadequate and
only indicate general trends, Un%til such time «s a better data base is available, the

use of these data as shown is recommended for estimating the drag of rectangular holes,

4.3 Spanwise/Longitudinal Discontinuities

Skin Jjoints in the external surfaces of wircraft, and similar surface
imperfections, form a serond type of roughness which is a significant drag producet.
Spanwise akin splices for instance cover the entire wing from tip to tip ond no portion
of the wing is free ot thelr effect,




B TE ey

CBraa o

rLank

- owme

I{L;T i Rectangular {{1-{ 1%44} IT;T
i 1 ; R i1
I w/A=0,4, h/t=0,2h* = 2x10° ihﬂl }}Lj T
i B R .1_3__.'*4._‘;:;:’1
T e o Sewses T
%A# RESEFER h/L=0.44, h"=2x10 Gaudet/Winter (Ref. 4,5) ‘—~
j{:f e fff--——-* Circular ISR TDES N R
. al _ + P Tt
i Ceb h/t=0,2, h*=2.54 x 124 RO D E N R
b I e USRS I Fug s NN SRR I
10 rrie o apemsmber S T o
Cop B
fo 6o
=
4
Q] R
'.'.'—1
Lt | Mach No. |

Figure 4,22 Mach Number Effect on Hole Drag

4.3.1 Spanwise Steps and Ridges

Excrescences which extend across the flow with the long axis normal to the flow
direction are generally categorized as steps or ridges, Steps have only one side
exposed to the flow, which can be facing forward or aft, whereas ridges have some
combination of both forward and aft-facing steps.

The usual starting point in a study of these kinds of excrescences is the two-
dimensional step with a 90° forward-facing surface, Investigations using this basic
configuratior have been more numerous than for most surface irreqularities. Bvin s0;
some uncertainties still exist with respect to defining the drag of such steps. The
most comprehensive and useful studics wer: mede during the RAE and ARA rescarch
(References 4,5 and 4.15). Results from thes: studies provide the basis for the methods
described in the following sections,

4,3.1.,1 Forward-Facing Step
4,3.1.1.1 Two-Limensional Step Normal to the Flow

Figure 4.23 cummarizes some of the forward-facing step drag results using the
approach originally presented in Reference 4.5, The exaperiments by the RAE were
conducted on steps deeply immersed in the boundary layer (h < G.038 ), It was -.easoned
that since the step height was so small compared to the boundary layer, that the flow
would depend on the same parameters as the inner region of the boundary layer. A
roughness Reynolds number was defined as

=v &/ 4(25)
T V]

where
Ii = height of step
u

s = friction velocity based on the wall conditions ('1'/[')1/2

v = Kinematic visuvosity at the wall
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Figure 4.23 Drag of 2-D Forward-Facing Steps Nommal to the Flow

Likewise, a drac¢ parameter was defined as the ratio the drag per frontal area to
the local skin friction coefficient, CDe/Cfe’ Plotted in the form CDe/Cfo = f(h+), some
unique relationships were determined as shown in Figure 4.23, Despite a large amount of
scatter, a linear variaticn can be defined which has some Mach number Jdependence up to
about M = 1.4. Data from other sources tend to support the linear variatior, although
absolute levels and slopes are different. These differences c¢ould be related to test
technigue but also there is the possibility that the degree of submersion of the step
within the boundary layer is a factor. The Wieghardt results, for example, covered a
range of heights from 3.6% to almost 50% of the boundary layer thickurss. These steps

would tend to have less dependence on the inner boundary layer parameters., As can be

seen, the Wieghardt data have the same slope as the incompressible RAE data, but an

overall lower drag ratio.

In the case of the supersonic results (M i 1.4), Reference 4,5 notes that all the
data seem to be along a single line as shown on Figure 4,23. Becaus2 of the lavde
difference between the subsonic and supersonic data, Referer 2 4,5 suggested the need to
investigate the transonic speed range (M = .8 to 1l.4). This was acconplished in a
limited ftashion by Pallister, Reiference 4.,15. Pallister repeated the prvocedurers of
Reference 4.5 for M = 0.6 to 1.4, but for a narrow range of roughness Reynoids nuawer,
h*. His results ior M = 0.8 and 1.4 are shown to agree with the RAE date on Figure
4.23., The variation with Mach number through the transonic range is shown in Figure

4,24,

Other forward—-facing step drag results for multiple step configurations are also
included on Figure 4.23. Hood, Reference 4.11, tested lapped 3oints on & NACA23012
airfoil. An equivalent value for CDe’lee was actermined and is considerably nigher than
the correspondiny incompressible RAE data. This is not surprising for several reasons.
First, some additional drag may be present on the airfoil due to transiticn movement
between the smooth and rougn airfoil configurations. More significantly, the influence
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of excrescences 0a the boundary layer in the presence of an adverse prassure gradient is
known to be greater than for a zero-pressure gradient flow, Reference 4.7, These data
have been "corrected" to an equivalent flat plate condition by extracting the Nash and
Bradshaw multiplying factor. As shown in Figure 1,23, this accounts for the majority of
the difference between this and other low speed adata.

The multiple-step supersonic data of Czarnecki, ¢t al, Reflereuve 4.18, is also
represcnted on Figure 4,23 as an equivalent single 2-D step. In this case, the effects
of pressure gradient and transition are not present and the drayg ratio is in fact lower
than the RAE supersonic data. Reference 4.5 atiributes this teo the nmutual interference
between the steps.

Becausc of the observed differences there may still be some guestion as to the
universality of the RAE results. However, present judgment dictates the use of the RAE

and ARA correlations for step drag. Therefore, the recommended procedure tor estimatiag

the drag of 2-D steps is as described below,

For M < 0.8 an¢ M > 1.4, the Reynolds number variations of Figure 4.23 are used,

For transonic #ach aumbers between M = 0.8 and 1.4, ar interpolation is suggested based

on the data of Figure 4.24 and i1s shown in Figuie 4.25.

Thuy, for M < 0.8, > 1,4,

4+
c[)e =F (Cf' M, h) (Figur= 4,23) 4(26)
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and for M > 0.8 and < 1.4,

_ +PC , - c 4(27)
(CDe /CFe)M h (CDe /Cfe)M =0.8 ! [(CDe/Cfe )M =1.4 (CD°/ fe)M = 0.3]

o ag

where l‘C1 = F (M), Fiqure 4.25, and the CDe/CEe values are taken from Figure 4.23 at the
approp iate roughness Reynolds number.
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Effect of Mach Number in the Transonic Range
On the Drag of Forward-Facing Steps

Figure 4,25.

4.3.1.1.2 Effect of Chamfering or Rounding

The effects of rounding and chamfering the face of a forward-facing step were Je-

termined for h* = 200 and 1000 at four Mach numbers during the RAE experiments. The data

were re-plotted for use herein in the form shown on Figure 4,26, The effect of rouyhness

Reyn<lds aumber, h', is small and an average curve wa3 drawn through the ht = 200 £ a

1000 values for each Mach number.
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\ The method for estimating the drag of a rounded or chamitered 2-D step 1is as
?\; iollows:
.
¢
K For a ¢cunded step,
y,_ Cpo /€17 (e /%) b-ea) 428)

where (CDe /Cfe) = drag ratio for a normal 2-D step from Se;}tion 4.3.1.1.1
r =20

E = F (r/h, M) from Figure 4.26(a)
t/h

Far a chamfered step,

G /C ={C. /C - .
« De/ fe)e ( De/ fei" = o° = Q0 E@) 4(29)
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where (CD /Cf) = drag ratio for a normal 2-D step from Section 4.3.1,1.1
a
6= 90°

E = f (#, M) from Figure 4.26(b)

4.3.1.1.3 Effect of Flow Angle

The etfect of cross-flow on the drag of 2-D excrescences is discussed in Section
4.3.2.3, It is assumed that the results of Figure 4.45 are applicable for forward

steps. Thus, the drag coefficient in cross-flow is given by:

- . 2
(CDe)q = (CDG) X sih g 4(30)
a =90
where
@ = crogs-flow angle (see Figure 4.45)
(Cpe? = drag coefficient of a plain 2-D step from above.
e’y 90°

4.3.1.2 Rearward-Facing Step

4.3.1.2,1 Two-Dimensional Step Normal to the Flow

Some recent results for rearward-facing steps are shown in Figure 4.27 for M = 0.8
and 1,4, The data of Reference 4.5 are shown for these two Mach numbers for comparison
with Reference 4.15, The amount of scatter and/or uncertainty is significantly greater

than for f{orward-facing steps. Both References 4.5 and 4.15 note this fact and
Reference 4.15 suggests several reasons. First, the approaching boundary layer in the
Reference 4.15 experiments was the product of “"rough-turbulent" flow rather than the
smooth-turbulent flow of Reference 4.5. This would tend to amplify differences down in
the region of the laminar sub-layer (1% of boundary layer height). Second, the buoyancy
correction for the balance set-yp used in Reference 4.15 was a larger percentage of the
total incremental force being measured than in Reference 4.5. Accordingly, Pallister

tends to discredit the data in Reference 4,15 for the lowest step height (1.27 mm).
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Figure 4.27 Drag of Rearward Facing Steps at M = 0.8 and 1,4
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The lines faired through the results in Figure 4.27 are taken from Reference 4.9.
These lines, plus those for the other Mach numbers tested and reported in Reference 4.5
are repeated

in Figure 4,28, Data from several o¢ther sources are included for

comparison.
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Figure 4.28 Drag of Plain Rearward Steps

The linearity oi the forward-facing step Jdata, CDe/Cfe vs h+, 15 also apparent in
the rearward step results, However, the variations with Mach number are more pronounced.
Whereas, the drag of the forward step increases with Mach number up to about M = 1,4 and
then remains essentially constant, the drag of
M=1.4.

rearward steps starts to decrease at

The transonic range was investigated in Reference 4,15, and these results are com-
pared with the Reference 4.5 data in Figure 4,29, This is done at a constant h* = 1000
since the Reference 4.l15 tests were at a nearly constant Reynolds number. Three heights
of step were tested and a different Mach number variation was obtained for each. Noting
that the variation for the largest height (3.8lmm) tends to agrce with the Reference 4.%
results, and recalling that the agreement for the forward step was also based on this
step height (where no other heights were tested), it is reasoned that the h = 3.8lmm
regsults are most nearly correct. This conclusion is also supported by the fact that
Reference 4.15 tends to discount the yvesults for the smaller steps, Tnerefore, the
recommended method for estimating the drag of rearward steps includes use of the
Reynolds number effect of Reference 4.5 and the Mach number effect as shown in Figure

4,29 for the *.81 mm step,

Figures 4.28 and 4.30 summarize the data required for estimating the drag of

rearward-facing steps normal to the flow, For M < 0.8 ana > 1.4,

+
Cpe = F (S M, b)) 431)

as found in Figqure 4.28. For Mach numbers between 0,8 and 1.4, an interpolation can be

made using Figure 4,30,

(cDa /Cfeh)/‘= (CDe /Cfe)

+PC, |(C, /C. )
M=0.8 2[ De feM

-(Cy, 7 C,) ] 4(32
=14 0 Tfemsog aal
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h (mm) h/8 Source
1.27 .01 Pallistar
2.54 .02 Pallister, (Ref. 4,15)
3.81 .03 Pallister
Gaydet / Winter, (Ref,

4.5)
T T T
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Figure 4.29 Effect of Mach Number on the Drog of Rearward Steps

Coe’CIm = Cpe’Sredm = .2

(CDe/ Cfe)M =1,4" (CDe/ Cralm= .8

Mach Number

Figure 4.30 Mach Number Factor for aft Facing Steps over the
Transonic Range
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4.3.1.2.2 Efrfects of Chamfering or Rounding

The effects of chamfering on the drag of a rearward-facing step were investigated
over the Mach number range from 0.2 to 2.0 in the experiments of References 4.5, and
4.15, The results, re-plotted in Figure 4.31, show that for chamfer anglies down to 450,
almost no change occurs in the drag. At some Mach numbers, there is a slight ilncrease
in drag until the angle is less than 12°. Below 12°, there is a sharp drop for all Mach
numbers. Wieghardt also found a similar effect, with an even greater increase for
angles greater than about 20°,

The effect of rounding the edge of a rearward step has orly been summarily checked
for two values of radius and for Mach numbers between 0,6 and 1.4, Reference 4,15, The
results, re-plotted in Figure 4,32, show a slight increase in drag due to rounding.
Reference 4.15 offers no explanation for this increase, however, it 1is apparently
similar to the increases noted for the smaller chamfer angles.

For drag estimation purposes, data of Figures 4.31 and 4.32 have been generalized
in a manner similar to the forward step results. For chamfers, the results are shown in

Figure 4.33. The ratio, Gy , represents the degree of change in drag from the un-
chamfered base.
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igure 4.31 Comparison of Results on the Effect of Chamfer on Rearward Step Drag
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Source: Pallister, (Ref, 4.15)
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Thus, for a given chamfer angle, § , the drag may be estimated by:

/ = - 4(33
(CDe’Ch) (CDe/Ch) _ { Gﬁ) @)
8 q =90
where
(CDC/Cfe) = drag ratio for a normal 2-D step from Section 4.3,1,2,1
g = 90
G =fF (0, M) from Figure 4,33,

¢

Because the effect of rounding was so small, a single relationship was chosen,
independent of Mach number, representing an average of the Figure 4.32 results. Thus,

(Cou/Ss) =[1 +1.43 (o )] (Cpe/h) 4034)
v/h r=0

where

(CD /Cf ) = drag ratio for a normal 2-D step from Section 4.3.1,2.1
e

€ r =10

4,3.1.2.3 Effect of Flow Angle

The effect of cross-flow on the drag of 2-D excrescences is discussed in Section
4.3,2,3, It is assumed that the results of Figure 4,45 are applicable for rearward
steps. Thus, the drag cocfficient in cross-flow is given by:

_ .2
(CDe )a = (CDe )0. —gp X%n'a 4(35)

where

a = cross-flow angle (see Figure 4.45)

{Che ) = drag coefficient of a plain 2-D step from above.

4,3.2 Combined Forward and Aft Facing Steps - Ridges and Plates

Excrescences which displace the flow upwards, as by a forward facing step, and
subsequently return the flow to the original plane, and which do so in a short distance,
are termed ridges. A plate normal to the flow is an example of a ridge with zero
thickness, The basic experimental model for ridges has been the simple two-dimensional
sguare ridge where the height is egual to the thickness. The drag of this elementary
shape has been extensivcly cxplored by Gaudet/Winter Reterence 4.5 and Pallister
Reference 4,15 and their results provide the basis for the methods described herein.
Early studies at low specds and Reynolds numbers provide some additional ingight into
wne effect of geometric shape on the drag of ridges,




4.3.2.1 Two-Dimensional Ridge Normal to the Flow With Vertical Faces

For piain 2-D ridges deeply immersed in the boundary layer, Referencc 4.5 reported
linear variations of the parameter CDe/Cfe Vs h+, similar to those for 2-D steps.
Figure 4.34 summarizes their results for the Mach numbers tested, The addition by
superposition of the forward and rearward step drag produces a total which is about 50%
below the drag of square ridges at the lower Mach numbers, This implies a substantial
interference drag for the combined corfiguration. This difference subsides at the

higher Mach numbers and is not present in the M = 2,8 data,

400

300
CDe
Ch

200

100

0 U ;
10 20 40 60 80 100 200 400 600 800 1G00 2000
hT=vu ., b

Figure 4.34 - Drog of Piain Ridges

The incompressihle results for square ridges are compared in Figure 4.35 with some
of the early experiments of Wieghawdt, Raference 4.3 and Tillmann, Reference 4.4. The
relatively good agreenent with the Tillmann data is considered fortuitous, since these
experiments were on thre=-dimensional models (plates and bars). The ledges tested by
Wieghardt are similer to the 2-D ridges of Reference 4,5. In general, these resul.s
show the validity ot tne CDe/CEe vs h+ approach for these kinds of excrescences.

The trensonic experiments of Reference 4,15 further corroborated the Reference 4.5
data and provided a more detailed coverage of the transonic speed rande., Figure 4,36
compares the M = .8 and 1,4 data for square ridges from the two sources and Figure 4.3%
shows how the compressibility effect compares at a constant roughness Reynolds number
(h+ = 1200). As the flow becomes supersonic the drag increases substantially to a level
50% higner than the subsonic drag. Above M = 1.0 the drag decreases back to the
low-speed level. This sharp variation over the transonic range makes clea: the need to
obtain careful experimental measurements over this speed range and to properly account
for Mach number effects during drag estimation.

To assist with the latter, the transonic data of Refercnce 4.15 for square and rec-—
tangular ridges was used to derive a Mach nuwmber factor to approximate the variation
between M = 0.8 and 1.4. Since the drag variation with roughness Reynolds number at
M =0.8 and 1.4 is known (Figure 4.34) it is convenient to rclate the transonic effect
to these data. Thus, the drag increase abova M = 0.8 was ratioed to the known
difference between M = 0.8 and 1.4. This was done for the square and rectangular ridge
data of Reference 4.15% and an average curve obtained, The result is shown in Figure
4.38.
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The drag of rectangular plain ridges with a thickness twice the height was aluo
investigated in some detail in Reiercnces 4.5 and 4.15.

-
Vﬂiﬁ%ﬁﬂﬂ!’%ﬁ

Figure 4,34 contains the
Reference 4.5 summary of the Reynolds number variation for comparisun with the sguare

} é ridge data. For low values of h’, where h/8 was about 0,01 to V.02, the drag of the
i § reclangular ridge is higher than for square ridges. Reference 4.15 experiments were at
| i; b* values near the cross-over point and 4o not clarify this effect. At bigher values of
\ ;‘ h+, where h/§ was near 0,03 ir the Reference 4.5 tests, the drag of tac rectangular
' i ridge becomes less thar for an equivalent square ridge, see Figure 4.34. Wieghardt's

¥ experimants also show a decreasing drag with increasing tilickness of the ridge for a
I f constant roughness Reynolds number. In this case, thc heights of tne ridges waere all
‘ i, greater than 3 percent of the boundary layer thickness., This effezt i5 shown on Figure
: ;. 4.39, These latter results can be used to approximate the effect of increasing tha

g ratio of thickness to height for rectangular ridges,

; The drag of plain ridges is calculated as follows:

i Square Ridges:

- . +y
Cpy/ = Alog () +5

4(37)
where
. M A B
.2 150 -190
.8 150 =160
1.4 160 -125
2,2 110 -42
2.8 100 -44
. for 0.8 < M < l.4:
E
r (Cn./C. )=(C.. /C. ) +PC [(c /C. ) -(C. /C.)
¢ De’ “fe Le’ “fe 3 f
; M= .8 el “felparg Dol Ry g 438)

where PC3 = f(M), Figure 4.38, and the drayg ratios at M =

0.8 apd 1.4 are calculated as
above,

P g

Similarly, for rectangular ridges

(a) t = 2h
M A B
.2 105 =55
! .8 115 -60
' 1.4 100 8
1.7 100 20

The variation between M =

08 and 1.4 is the same as for sguare ridges.
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{b) t = variable

The data of Figure 41.39 have been converted into a more general form in Figute
4,40, Thus, for any value of t/h,

C C,. ) = T(C, /C.)
Coo/Cee) = T 0 ), 4@)

} is the drag ratio for a square ridge of the same height, and
t/h=1
T = f (t/h), Figyure 4.40,

where (LD

, /¢

a fe
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S 1 Wieghardt (Ref, 4.3) :
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Figure 4.40 Effect of Thickness on the Drag of Rectangular Ridges
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4.3.2.2 Ridges With Different Cross-Scction
(a; Rounded Edges

Reterzsnces 4.9 and 4.15 determined the colfccts of rounding the eodges of a
vectangular ridge. The results are compaved in Figure 4,41, By re-plotting the data of
Figure 4.4) 1nto the form shown in Figurce 4.42 scveral tactors can be seen, First, the
low speed data (M < 0.8) all tend to be concentrated about a common mean curve, as do
the rvesults for M > 1.4. The shapes of the curves are similar for each Mach number
indicating that the Mach number effec: between 0.8 and 1.4 is uniform., This implies
that a single curve can be used to represent the basic effect of rounding with a
sgparate Mach number effect. The curves of Figurc 4.43 resulted.

A second observation to be made from the Figure 4.42 data is that the greatest
change seems to occur with the initial amount of rounding and essentially no change is
manifested by further rounding. When the radius approaches the value of the height of
the ridge, a slight increase ia drag is secenr, Singular values, corresponding to r/h=>1,
were oObtained from scveral other sources and are included on Figure 4,42, These seem to
substantiate the overall results.

Flow i

’ h
/A 3
b 2h—
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Pallister (Ref. 4.15)

.

Gaudet /Winter (Ref, 4.5)

X+ o 00D «0dDO
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\'&mufhogcm

400 2,0
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.::i_{ 4{_ HET
I3 ES HiH
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r/h

Figure 4.4] Compaiison of Experimental Results for Rounded Rectangular Ridges
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The eftect ol rounding the edges of a

ridge, or the drag of a rounded profile
ridge,

is estimated by covrvecting the vectangular ridge of

(C,./C.) =(C, /C, )
De” e Rounded Ridge De” “fe r/h=0

the same height by:

X(ZM)r/hx(Zr/h)o 4(40)

where (C . ,/C. ) = drag of ploin ridge os determined in Section 4.3.2.1,
De fe I'/"r =0

(ZM)r/h = Mach number effect on rounding from Figure 4.43(b).

(Zr/h) = effect of rounding at low speed from Figure 4.43(a).
o

(b) Other Proftile &napes

Data tor ridges with profile shapes other than sguare, rectangular or rounded are

very scarce, In the original work of Wieghardt, Reference 4.3, ledges with different

profile shapes were tested over a range of thickness~to-height ratio. The results are
repeated here, Figure 4.44, so that some guidance may be given relative to the degree of

difference in drag for the varilous shapes,

Since the Mach number effects are similar for the sguare, rectangular and rounded

is true tor the other shapes as well. Based on
the drag for any other-shaped profile may be found by first evaluating
the drag for one of the basic shapes at the appropriate Mach number and roughness
Reynolds number and then correcting for shapc using the data of Figure 4.44.

shapes, 1t may be reasoned that the same
this reasoning,

~
e

Source: Wieghardt (Ref. 4.3}
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Figure 4,44 Drug of Spanwise Ledges of Different Profiles
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4.3.2.3 Effect of Flow Angle

In cross-tlow the drag ol an excrescence, such as a ridge or ledyge, based on the
projected trontal arca should be reduced Ly the cifect of the reduced velocity vecton
normal to the ridge face. Since the drag coefficient is nowvmalized on velocity-
sqguared, the drag coefficient would then be reduced by approximately the sgua
velocity vreduction. The validity ot this principle can be demonstrated in ¢

2-D or plain ridges,

Two sources prescent data showing the effect of cross-flow on the drag of rectan-
gular ridges., These sources, Wieghardt, Reference 4,3 and Kovalenko, Reference 4.19
have been used to correlate the effect of fluw angle. The results are summarized in

Figare 4.45. The reduction in drag coefficient, represented by the ratio LDO/%k

o a= 90
has been plotted vs flow angle, a, and compred with the value of sin“a. The agrecment
is e¢xcellent and, considerig the diverse conditions of the two sources, it is concluded
that the sinza function can be used to approximate the cffect of cross-flow on ridge

drag coefficients,

Although it has not been substantiated, the cross-flow described above is belinved
applicable to cther 2-D type excrescences, such as forward and rearward facing steps.,
This assumption has been made and in Section 4.3.,1.)1 and 4.3.1,2 the cross-flow cffect

on 2-D step drag is based on this assumption,

In summary. the drag coefficient of a ridge in cross-flow is calculaved from

. .2
(CDE )’1 = (LDe) _ X SIN 4(4])
n =90
where
« = cross—-flow angle (sec Figure 4.45)
(CDe) = drag coefficient o[ wne plain riage as determined in 4,3,Z,1 or 4,3,2,2,
« = 90

o.@ Wieghaidt (Ref, 4.3)
+,%x Kovalenko (Ref, 4, 19)

3 2234 % PRS2 ST 24

a ~ Degrea

Figure 4.45 Effect ot Flow Angularity on the Drag of Ridges
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4.3.2,4 Muitiple Ridges in Series

Laciy, Reference 4.27 has made low speed measurements on arrangements of a number
of spanwise ridges o0f square section on a plate in zero pressure gradient and some of
his salient results are summarized in Figure 4.,46. There is plotted the ratio of the
drag of a system of ridges to that of a single ridge in the leading ridge position as a
function of ridge spacing to height ratio (s/h) or of the ratio of the area covered by

‘the ridges to the total plate area (AR/A) (called ridge density).

The individual curves correspond to values of the ratio of the plate length to
ridge height (L/h).

The number (N} of ridges is given by

N=tA=t /e 4(42)

It will be scen that tor any ygiven plate length and ridge height, there is a
critical spacing (and hence N) leading to a maximum drag increase, This spacing is
about 10h, For a more sparse spacing the interference effect of the wake of a ridge on
downstream ridges is small and the drag decrcases as s increases because N decreases;

whilst for a closer spacing the interference effects increase so that the drag decreases
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Figure 4.46 Variation of Drog with Selected Surface Length and Ridge Density in Zero Pressure Gradient
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in spite of the increase in N. The experiments show that 2 ridges less vthan about 8h
apart have a dray less than that of a single rvidge, However, there 315 some cvidence
that h*w plays a small but not i1nsignificant patt in thege interterence eftects and this
has not been explored adeguately, These same data arce shown in Figure 4.47 plotted as
the total drag divided by the drag of a single ridge multiplied by the number of ridges
being tested. It 1s scen that forward ridges provide a significant shielding of the
ridgces behind for all of the cases shown here., (The vidge spacing must exceed 75 ridge
heights before the system drag is equal to the sum of individual ridye drags.) A shown
by Figure 4.47 this shlelding eftect is substantial and increcascvs as the number of

ridges increases.

8&.

1 1 _1
.02 .04 06 .08

RIDGE DENSITY, AR’/A =h/s

Figure 4.47 Effect of Ridge Density on the Drog of a System of Spanwise Ridges

4.3,3 Gaps and Grooves

The category of gaps and grooves inciules those excrescences such as gaps between
joints, gaps caused by control surfaces, and spanwise grooves, slots, or contours, all
of which are ncrmally small compared to the configuration geometry (airfoil, wing, etc.)
and the local boundary layer., The data discussed here do not coasider open cases where
fluid might flow through the gap. For a discussion of the dray of control gaps with
flow through them see Section 5.4, In genecral, the magnitude of the drag of spanwise
gaps is also small and consequently difficult to measure experimentally. In fact, in
one of the most recent and careful experiments on excrescence drag, Reference 4.5, it is
stated that the measuvements of the drag of grcoves are considered poor because of the
problem of obtaining small increments from much larger overall mcasurements, Thus, the
available experimental data base tor spanwise gaps contains a lot of scatter and is

difficult to correlate. Refercnce (4.5) determined cthat the drag ratio, CDP/Cie’

PSP
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evidences a weak dependence on roughness Reynolds number. An earlier publication,
Reference 4,20 showed a family of curves where the depth ratio, h/1,

significant parameter, As in the case of circular holes,

was also a

the drag coefficient Chp 185
based an the planform area of gaps or grcoves,

An independent evaluation has been made for the present work and the stronger

dependence has been found to be with respest to the depth ratio., Both of these methods
will be described

4.3.3.1 Gaps Normal or Parallel to the Flow

Data are presented in this section for spanwise gap configurations which have the
long axis normal or parallel to the flow direction. The effect of flow inclination on
the drag of spanwise gaps is given in the next section.

Reference 4,5 gives a small linear dependence of CDP/C e On h+ for slot

$ Or grooves
ncrmal to the flow:

+
Cop/Cre =2loa (h') - 2 4(43)

In Figure 4.48, the available slot data has been plotted as a function of the depth

ratio, h/l, A distinction has been made between slots with the long dimension normal to

the flow direction and those where the long dimension is parallel to the flow. Since

there is an order-of-magnitude difference in the values of h/1 for the two categories,
the depth ratio was based on the shortest side for each case, This type of presentatiou

produced the most consistent trends with the least amount of scatter.
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Figure 4.48 Drag of Slots
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Since the geometry effects seem to be more predominant, the mean wcurves of Figure
It must be pninted ovt that the
3 to 3 x 104 and that at

4.48 are recommended for the drag of spanwise gaps,
range of h+ for these data is limited to approximately 1 x 10
higher values of h+, the Reyaolds number effect of Reference (4.5) may predominate for
spanwise grooves. In the case of longitudinal or chordwise grooves, Reference 4.5 found
that the drag chandge was roughly equal to the drag of the increasedé skin friction on
both sides of the groove, This would be a reasonable alternative to the use of Figure
4.48 for longitudinal grooves.

4,3.3.2 Gaps Inclined to the Flow

The only data on the effect of flow inclination on gap drag is found in Refernnce
4.3, The results are summarized in Fiqure 4,49. As can be seen, the variation with
flow angle, « , for the configurations tested is not the same, No convenient correla-
tion can be derived and consequently, the data of Figure 4,49 can only be used as a

gencral guide for the effect of flow inclination.

CHTU L Source: Wieghardt (Refl4,3) ¢ - 1 i
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Figure 4,49 Effact of Flow Inclination on the Drug of Gaps
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4.3.4 Surface Waviness

Surface waviness may be described as a repeated deviation in surface contour which
has the effect of imposing a sinusoidal-type displacement of *the local flow in the
streamwise direction. On aircraft, it is generally present where multi-panel
manufacturing techniques are employed such that the seamed areas along the panel edges
more rigidly follow the intended contour than the panel centers. Bulges or indentations
occur which more-or—less have a repetitive wave-like appearance on the surface. This
situation may be worsened under flight load conditions where local stresses may increase
the amplitude of such deviations. Pressurized fuselages, in particular, may undergo
significant amounts of bulging at the high cruise altitudes typical of today's transport
aircraft,

A review of the literature on the subject of drag due to waviness as applied to
alrcraft surfaces reveals an outstanding example of the problem caused by a lack of
adequate methods to assess roughness drag. Hoerner's approach to this particular source
of drag was to correlate CDm, based on projectea frontal area, against a relative
waviness parameter, h/l, where h is the wave amplitude and 1 is the wave length. His
results are shown in Figure 4.50. This correlation was based on two sources: the
airfoil test of Hood, R=aference 4.23, where two heights of sinuscidal-type waves were
tested, and the Wieghardt data 4.3 for a rounded spanwise ledge. Some more recent
results from Reference 4.21 have also been included on Figure 4,50 for comparison, The

drag coefficient CDm is equal to A D/qm f_ where A is the mean dynamic pressure over

e
the height of a wave and fe is the projected frontal area of all waves present,

The basic problem with the correlation of Figure 4,50 is the applicability of data
with large values of h/1 to surface waviness on aircraft whece a reasonable h/1 value is
at least an order of magnitude smaller, Hood recognized in Reference 4,23, that the
relative waviness of his experiments was much larger than would be representative of
aircraft of his time (1939), Although there is no doubt that Figure 4.50 correctly
models the drag for surface waviness at large h/l, the validity of the vanishingly small
Cpm for small h/l values is questionable,
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Some insight into this problem was made as a resunlt of Reference 4.22. A Boeing
720 was instrumented to measure fuselage boundary layer with the objective of
determining the effect of c¢abin pressurizatien on the fuselage drag. Several

observations can be made from this work,

o First, the degree of waviness, h/l, caused by overpressure deformation of the
tuselage surface was measured to be 0,.00175, This corresponds to a bulge
height of 0,035 inches and a spacing between fuselage frames of 20 inches,

o The measured drag increase was determined to be Cp = 0.0001, waich is approx-—
imately 5% of the fuselage drag.

i) The measured drag includes the effects of any leakage or air exhaustion which
would occur under pressurization. No gquantitative breakdown was made of the
relative magnitude of drag due to leakage as opposed to skin bulging.
Speculation was made that the latter would be less of a factor.

The degree of waviness determined in this example, h/l = 0,00175, is an order of
magnitude smaller than the smallest value shown on Figure 4.50. Use of Figure 4,50 forv
a CDm value corresponding to this level of waviness would be meaningless, Although the
actual size of the adaitional drag due to the surface bulges in Reference 4,22 is not
known, a rational assumption of one-third of the total would imply a Cpp Value of about
0.015, This value is not compatible with the curve of Figure 4.50, although it is in
general agreement with the results for the smallest h/L tested.

In order to investigate the possibility of a more useful correlation, the available
test data have besen converted into the form Cam/cfc vs h', Figure 4,51. Additional data
from Reference 4.21 on creases has also been included, Figure 4.52, since this

particular roughness configuration is very similar to the wave configuration.

At the higher Mach numbers, where there is significant wave drag, the familiar
linear wvariations observed for other excrescence forms are also present in these data.
A fairly orderly progression with Mach number is observed. However, the subsonic
(M < ¢.7) data do not exhibit the characteristic drag increase with increasing roughness
Reynolds number. In fact, the data are more or less scattered about a residual level of
CDm/Cfe of approximately 5.0. A constant value of CDm/Cfe of 5.0 would correspond to a
10 to 20 percent increase in skin friction drag for the conditions covered by the data.

In Reference 4.24 where corrvelations of the wave drag from the Reference 4,21
experiments were made with theory, it was also concluded that an added drag coefficient
was present in the order of 10-15% of surface friction. This level of skin friction was
attributed to the formation of Gortler vortices which are generated in the concave
regions of the waves. At some wave height the vortex strength becomes sufficient to
affect the friction drag and the amount of additional drag increases roughly with the
increase in h/l. Apparently, from the experience of Reference 4.22, a relative wave
height of h/l = .00175 was sufficient to cause increased skin friction. However,'this
has not been sufficiently substantiated and the problem of an inadequate data bhase 1s
further underscored. In the subsonic range and for low h/l, use of a constant value of
CDm/Ctc = 5,0 seems to represent a conservative approach until this problem is resolved,

At higher spceds the linear variations with roughness Reynolds number, Figqure 4,51,
4.52, can be used to account for Mach number and Reynolds number effects due to surface
waviness. Unfortunately, there are large differences in the slopes of CDm/Ci vs h¥ ror
the configurations tested and generalization of the results is not pcssible. The
recomnended approach is to use the guidance of either Figure 4,51 or 4.52 based ou the
degree of similarity of the actual surface waviness to those represented by the date.
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5. FLOW OVER ROUGH SURFACES WITH NON-UNIFORM PRESSURE DISTRIBUTION

5.1 Drag and Momentum Loss Magnification Factors of Isolated Excrescences

An early approach (Reference 5,1) to the problem of the drag increment due to an
isolated excrescence in a non-uniform pressure distribution was to assume that the
increment expressed as a coefficient in terms of local free stream conditions was the
same as in a uniform flow, so thc drag was simply proportional to the local free stream
dynamic pressure. However, in 1967 Nash and Bradshaw (Reference 5.2) demonstrated that
the subsequent history of a boundary layer after encountering an excrescence was
important in determining the associated drag increment, and this could be very different
and was often larger than that calculated on the assumption of simple proportionality to
the local free siveam dynamic pressure at the excrescence position, Their argument was
developed for incompressible flow and was briefly as follows for the flow over an

aerofoil section,

The Momentum Integral Equation for a turbulent boundary layer can with certain
acceptable assumptions be shown to lead to (see Reference 2,2, p336)

X

. 1 4

o 65 ue4'2- 906/5u:°2 =0.0106 + /5ﬁe .
x

[

Here, suffix o refers to quantities at the position of the excrescence, U, is the
local f£ree stream velocity at the edge of the boundary layer, and the Reynolds number is
assumed to be high enough for the 1/9th. power law for the velocity distribution to be

applicable (scc Section 2.1.2), Hence at the trailing edge (suffix T)
7
"
96/5 o 42 - 96/5U 4.2 L4 0106 \,stu“dx. 5(1)
T el o eo e
xO

Now suppose that the excrescence produces an effective change in the local value
of @ from 00 to 00 +A 00, 00 being the value at the excrescence position in the
absence of the excrescence, It is assumed that A i, < 00 and that the excrescence
produces ne change in the free stream flow and that any local modification in the form
of the boundary layer velocity profile due to it can be neglected. Then from equation

5(1) the corresponding change in 6, is given by

/5 4, 1/ .
]'ZABT 8 T/UeT2=]'2Aeoeo/5 Uejz'
1 .
Hence aop/sag=ts /ay) /5 (“eo/"eT)42' 5(2)

We refer to AHT/AGO as the momentum magnification factor (although strictly it is the
momentum thickness increment magnification factor) and we shall write it as mo.

If we now use the method due to Squire and Young (Reference 5.3) for solving the
momentum integral equation for the wake to relate HT to the value of ¢ far downstream

and hence to the drag coefficient C then the change in CD due to the excrescence 1is
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\ found tc be given by
- 3.2
3 8Cp =2y /V )T pay/e.
E
f
P
' Here <p 1s based on the aerofcil chord ¢ and the undisturbed stream velocity V- Hence,
making use of 5(2) we have
_ 4.2 /5 .
: 8Cp =2 V) Y ug) Le /ep) 7T (e /e) " 5(3)
:
4
: For the same excrescence on a short element of a flat plate and zerc pressure
E gradient with undisturbed free stream velocity u we have
1%

[=]e]

(A CD)fp=2A Qo/cr

where we have referred (ACD) £p to the length c.

Hence A CD/(ACD) o =my . 5(4)
V{
where my=log V4PV 2u ) (a5 5(3)

and my is called the drag magnification factor.

We see that m, can be readily underestimated by the

earlier assumption that
_ .2,
Mg = (Uee/Vp) ™y if

eo > VU. Figure 5.1 shows Ma plotted as a function of ueo/vo for
various values of ﬁO/HT; it will be seen that my is not very sensitive to variations in
HO/dT. Nash and Bradshaw d4id some experiments which brecadly supported their analysis

and demonstrated the inadequacy of the earlier assumption for non-uniform pressure

distributions.

It is clear that one can adopt any other methed of prediction
development to determine the magnification factor anud in particular the effects of
L compressibility can be included. Cook (Ref. 5,4) used the Green form of the lag
entrainment method (Ref. 2.27) combined with the compressible form of the Squire-Young i

wake relaticn and compared the resuiting predictions with measuraments that he made on
square-sectioned ridge excrescences on two aerofoils

of boundary layer

over a vange of gubsonic Mach

e

numbers up to 0.77, Reynolds numbers up to 15 x 10° and valuvs of (.‘l up to C.6. His
#

basic zero pressure gradient data were derived from the Gaudet, Jonnson, Winter results 1

(Ref. 5.5, 5.6, 5,7). Some comparisons are shown in Figures %.2 and 5.3 for the

the prediction method
underestimated the increment by about i0% for conditions whers the

predicted and measured drag increments, On the whole

lecal flow was sub-
critical, but it is evident that at higher Mach numbers when shock waves develop near
the excrescences the predictions become less ieliable because of

rhe effacts of the

excrescence on the shock wave, on the shock wave-boundary layer interaction and the

development of a shock wave from the exceescence itself. It will be

seen that in all
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cases the old assumption of a magnification factor simply proportional to the local
dynamic pressure i{s seriously in error. It must also be noted that in order to achieve
incroments large enough to be measured with adequate accuracy Cook's excrescences
sometimes extended to about d /3 in height and were then partially outside the
logarithmic law of the wall region to which the basic Gaudet, Johnson, Winter data
apply. This may well explain the 10% or so underestimate of my noted above when no

shock wave was present.
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EXPERIMENT
- GAUDET AND JOHNSON DATA SCALED BY RATIO OF
LOCAL TO FREESTREAM DYNAMIC PRES3URES
- GAUDET AND JOHNSON DATA SCALED BY MAGNIFICATION
FACTOR ESTIMATED USING GREEN BOUNDARY LAYER
METHOD AND COMPRESSIBLE FORM OF SQUIRE & YOUNG LAW
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.-‘_%
\}\“_.‘- ——
¥
-0.2 0 0.2 0.4 CL 0.6
a. M =0,601
0.004
L\CD
0.002
T =T —— ]
0
0,2 0 0.2 04 CL 0.6
b, M =0.661
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0
=0.2 0.2 0,4 c, 0.4

L
d. M=0,769

Figuie 5.2 Drag Due to Square Ridge Excrescence at x/¢ = 0,43 on Lower

Surface of Section 2814:R =7.5 x '106
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EXPERIMENY

- GAUDET AND JOHNSON DATA “ZALED BY RATIO
OF LOCAL 10O FREESTREAM DYNAMIC PRESSURES

- GAUDET AND JOHNSON DATA SCALED BY MAGNIFICATION
FACTOR ESTIMATED USING GREEN BOUNDARY LAYER METHOD
AND COMPRESSIBLE FORM OF SQUIRE & YOUNG LAW
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----------------- T
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a) M =0.601
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b) M =0,661
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v / ' \
N
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0.2 0 0.2 0.4 C 0.6
¢c) M =0.769
Figure 5,3 Drag Due to Square Ridge Excrescence at x/c = 0,43 on
Lower Surface of Section 2814:R = 15 x 10°

Ambitious theoretical studies have been made by Keates (Reference 5.8, 5.9) on the
effects of excrescences on the characteristics of a two dimensional high 1lift
configuration. The configuration he examined consisted of a wing (RAE 2815 section)
with a 17% chord leading edge slat and a 40% chord Fowler type trailing edge flap. Two

0, flap angle = 100, and

arrangements were considered, takeoff with slat angle = 28
landing with slat angle = 28° and flap angle = 30°, Keates adapted Irwin's integral
method {Reference 5.10) to calculate the momentum magnification factor m. over the rear
of the wing for various positions of a two dimensional excrescence on the wing and he
also calculated mover the vrear of the flap for various excrescence positions over the
front of the flap. Irwin's method is designed to predict the development of the
boundary layer on one component of a multi-component lifting system in the presence of
the wake from an upstveam ccmponent, Suitable analytic forms for the velocity profiles
of the boundary layers and wakes are chosen S0 as to represent their initial separate
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development and eventual merging, with an appropriate number of unkpown parameters to be
determined by applying the momentum integral equation to the appropriate rvegions of the
boundary layer and wake plus assumptions regarding the entrainment rate into the cuter
part of the wake and the shear stress values at a number of positions across the
boundary layer and wake.

Keates made the usual assumption that the loca. effect of an cercrescence was
completely defined by an increment in momentum thickness related to its drag coefficient
on a flat plate as determined in the Gaudet et al. experiments., Initial smooth surface
values to start the c¢alculations were derived from RAE experimental data for the
configuration considered (References 3,10, 5.11). The calculations of the magnification
factor on the wing due to an upstream excrescence on the wing were not carried over on
to the flap, although further changes in the factor must be expected as the wing plus
slat wake pass over the flap., "he results of the calculations were compared with the
predictions of the Nash-Bradshaw formula, equation 5(2), and in some instances with
results obtained using the Green-Head entrainment method (Reference 2.27) for
determining the viscous flow development treated as a single boundary layer (i.e. the

wake modification of the velocity profile was not allowed for, but its additional
momentum defect was included).

In general Keates found that the effect of different excrescence heights on m, was
small, and such changes that there were reflected the effects on the merging positjon of
the boundary layer and the wake of the preceding element. Figure 5.4 illustrates the
effects of incidence on m., at the rear of the wing portion in the take-off ariangement
due to excrescences at three different positions. For all the excrescences the ratio
A&o/ao was kept constant and equal to 0.l. It should be noted that this implies an in=-
crease ofl&ﬂo with rearward movement of the excrescence since 00 increases with distance
downsiream, Also chown ave the correspoindiny values of me given by the Nash-Bradshaw
formula (mmNB) and it will be seen that the two sets of predictions are in reasonable
agreement for incidences up to about 14° but for incidences greater than 14° the Nash-
Bradshaw predictions are appreciably lower than those of the Irwin type calculation.
The large values of m with the excrescences well forward in regions of high 1local
suction are particularly noteworthy. Similar results for the landing configuration are
shown in Figure 5.5 and some results obtained for excrescences on the flap for the take-
off configuration and a = 152 are shown in Figure 5.6.

5.2 Magnification Factors for Multiple Excrescences and Distributed Roughnesses

Following Lacey's work on square sectioned ridges in zero pressure gradient flow
(see Section 4.3.2.4) similar work was done by Rabbo at Leicester University (Reference
5.13) in two adverse gradients, Both cases were planned to achieve equilibrium
turbulent boundary layers with a free stream velocity distribution of the form U, =
uo(x/xo)_a,where x is the distance downstream from an appropriate datum, X is the wvalue
of x for the first ridge and uy is the value of u, @t the first ridge., Some resulting
deductions are presented in Figure 5.7 and 5.8 in the same form as the results for zero
pressure gradient in Figure 4.46. In one case the index a = 0.13 and it corresponded to
a value of the Coles' pressure gradient parameter ]I = 1,2, in the other case a = 0.2,
corresponding to 1l = 2.0. 1In each case the drag per unit span of the ridge systvmAD is
as measured immediately downstream of the last ridge.

It will be seen from Fiqure 5.7 and 5.8 that with increase of the adverse pressure
gradient the maximum drag increment for a given array tended to decrease presumably
because of the accompanying reduction in pressure drag of the excrescences. Also the
spacing s/h for maximum drag increment for a given L/h decreased somewhat from about 12
for zero pressure gradient to about 10 for Il = 2. This was associated with a small
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Figure 5.4 Effect of Incidence on Maognification Factor on Wing
for Take-Off Configuration (Keates)
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reduction with adverse pressure gradient in the length of the Jdownstream separation
bubble for a single ridge from about 8.7h with 2ero pressure gradient ta about 7h for
I1= 2., It should be noted, however, that these results were for pressure gradients much
smaller than that required to bring the boundary layer close to separation. ‘they will
not apply when the possibility arises that the excrescences may trigger separation and
hence produce large changes in drag much greater than those illustrated in Figure 5.7
and 5.8, Such changes would then be accompanied by large 1li%t changes 1if the
excrescences were on a wing. It should also be noted that for bluff excrescences ex-
tending outside the boundary layer somewhat longer separation bubbles may be expected of
about 12h in length (see for example Reference 5.14).

For uniformly distributed roughness in non-zero pressure gradients it seems
reasonable to assume that Figure 3.5 may be expected to he applicable for determining
the drag increment A D, if D is the drag of the smooth surface, provided that Lhe
equivalent sand roughness height is small compared with the boundary layer thickness
and the boundary layer is not close to separation. This assumption is based on the
argument that the magnification factor is already accounted for in D since the drag
contribution of each element of the smooth surface will be subject to the associated
magnification factor in making its contribution to D and any local roughness
contribution will be subject to the same factor, Analysis of the results obtained by
Jones and Williams (Reference 5.15) using carborundum roughness on two aerofoils, by
Ljungstrom (Reference 5.16) using aluminum oxide grinding paper on an aerofoil with a
flap and slat and by Young (Reference 5.19) using camouflage paint shows the results to
be reasonably consistent with this hypothesis,

It may be recalled that Nikuradse's sand roughness grains were fairly uniform in
size and were closely packed, and their drag effect was appreciably less than if they
had been distributed some ten grain sizes apart. It may be inferred that any similarly
closely packed and nearly uniform roughnesses will have an equivalent sand roughnesas
height much the same as the average roughness height. On th~ other hand, the camouflage

paints tested by Young had roughness heights showing considerable variation and for each
the equivalent sand roughness height was some 60% larger than the average; it could be
equated with the largust roughness height that occurred wich fair frequency but at
sufficient distance apart for the roughnesses not to useriously interfere with each
other,

Further discussion of predictive methods for determining the development of the
boundary layer and its characteristics in the preseance of distributed roughness is given
in Section 5.5.

5.3 Effect of Excrescences on C of hAerofoils
Lnax

In regions of strong adverse pressure gradient the increase due tO upstream or
lccal roughness of the boundary layer momentum thickness as well as the associated
changes of the boundary layer velocicy profile may trigger or hasten flow separation.
Hence an aerofoil with excrescences on its upper surface will in general dewmonstrate

some reduction of C depending on the size of the excrescences, their location and

Lmax
the Reynolds number. Not surprisingly, it is excrescence locations close to the leading

edge on the upper surface for which the reduction of C can be very marked since the

adverse gradients are high there atr incidences nearngg stall and the magnification
factors are very large. The situation is complicated hy the fact that depending on the
wing geomstry as well as the factors referred Lo above the flow separation may cither
occur close to the excrescence and spread rapialy downstream or it may start from the
rear of the wing and spread forwards. The firmer is the more likely the larger the

excrescence and the smaller the nose radius of curvature 9f the wing,
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For the effects on C of uniformly distributed roughness over the upper surface

of a wing or high lift c::fdixgurat.ion there are only a few sources of data to which we
can refer, namely, Jones and Williams (Reference 5.15), Gregory and O'Reilly (Reference
5.17), Weeks (5.18) and Ljungstrom (5.16). These last three references were directed at
the effects of hoar frost and surfaces that would not be exposed under normal conditions
(e.g. parts of the wing leading edges under slats when clnsed) were not covered with
roughnesses when tested., 1In each case an attempt has been made in analyzing the data to
relate the ratioACLmax/chax

A D/D for the roughness on both surfaces of a flat plate at zero incidence and the

{clean) for a given roughness to the corresponding ratio

Reynolds number of the wing under test in terms of its mean chord leagth. Given the
equivalent sand roughness height the latter can be determined from Figure 3.5; in the
absence of adequate details of the roughnesses tested the equivalent sand roughness
height was taken as 1.6 times the average roughness height (in view of the results of
Reference 5.19). This was done in the cases of the data of Weeks and of Ljungstrom, in
the other two cases there were sufficient data to enable direct estimates of AD/D to be
made without the intermediate step of determining an equivalent sand roughness height.
The results are presented in Figure 5.9 where three mean c¢urves are indicated for the
cases of the wing alone (W), wing with flap (WF), and wing with flap and slat extended
(WFSY. The likely accuracy of these curves can be inferred from the scatier, but it is
as well to note that the data are all for wind tunnel Reynolds numbers (i.e, of the
order of 2.5-6 x 106), although it is to be hoped that the use of the ratio AD/D as
abscissa will implicitly account in large measure for Reynolds number effects,

It can be seen that the greatest sensitivity to small to moderate roughnesses is
shown by the wing with flap extended, presumably due to the very high suctions near the
leading edge engendered by flap movement and the associated large magnification factors.
In contrast, a leading &dge slat helps to reduce the suction intensity over the wing and

hence the sensitivity to roughness,

0.4['

= R
- X1
- X WING ALOME (W)

© WING PLUS FLAP (WF)

A WNING PLUS FLAP
PLUS SLAT (WFS)

1 LJUNGSTROM
2 JONES & WILLIAMS
3 WEEKS

4 GREGORY & O'REILLY
| Ll I W W |
1.2 1.6 2.0 2.4

AD/D

Figure 5.9 ACLMAX.’/CLMAX. (CLEAN) as Function of AD/D Due to Uniformly Distributed

Reughness over Upper Surface of Various Wing Arrangaments
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(Reference 5.9) has estimated the effect of an upper surface isclated ex-

for the high lift configuration that he considered (see Section 5.1)
was attained when the

Keates

crescence on CLmax
in the take-off arrvangement. He assumed that in all cases CLmax
value of the boundary layer form parameter H was the same at the rear of the wing por-
tion as for Crmax 25 measured without the excrescence on the wing (1.83). The validity

of such an assumption is by no means establishad but the results are of some interest.
Figure 5.10a shows the calculated values of A CLmax/CLmax as a function of AGO/Go and
different roughness locations Xn (it will be recalled that Al increases as Xon in-

creases for a given value of Aeo/oo). Also shown in Figure 5.10b are the calculated

(clean) against excrescence position for a rearward facing step

values of Achax/CLmax
to forward

of height lmm (n/c = 0,0011); here the rapid increase in sensitivity of CLmax

movement of the excescence location is clearly evident.

5.4 The Effects of Control Gaps

Control gaps can increase drag for a variety of reasons, The inevitable disruption

of the contour of the main lifting surface may induce some changes in the boundary layer

development and possible local flow separation. Flow through the gap due to the

pressure difference across it will be accompanied by losses which may be augmented by
this rflow interfering adversely with the boundary layer into which the flow emerges and

may induce separation there. The disrupted geometry effects may be expected to be

relatively insensitive to changes of incidence and lift coefficient but the effects due
to the flow through the gap, being associated with the pressure difference between upper

and lower surfaces there, will be closely dependent on the 1lift coefficient.

Hoerner (Reference 5.1) has analyzed some data for two dimensional controls and has

presented the wing drag coefficient increments as a function of gap/chord ratio. With

some scatter his results fall reasonably close Lu a mean curve given by:s

ACD = 0,007 (e/c)3/5, for the control at zero setting.

Hexe ACD is based on the wing area and e is the sum of the upper and lower surface

gap width where both exist. The definition of gap width is somewhat arbitrary, the

sketches of Figure 5.11 illustrate the conventions adopted by Hoerner,

Xyn = Xo/c, WHERE Xp, 15 DISTANCE

0.3r OF EXCRESCENCE DOWNSTREAM  ©.3j"
FROM WING LEADING EDGE
y
& 0.42
% o 2 0.2}
Ug § 0.13
T 0.05 0,1
Xwb
- i 1
0.4 0 0.2 0.4
b) *wb

Figure 5.10 ACL MAX./CLMAX. (CLEAN) as Function of A 00/ 0, for Various Excrescence

Locations on Wing Portion of High Lift Corfiguration; b} As Function of XWD for
a Rearward Facing Step of Helght Tmm (0,0011¢) (Keates)
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A) HOERNER'S DEFINITION OF GAP WIDTH

CONFIGURATION:

A: W =0,0067c
w B: W =0.,0033¢

E: W =0.0067c

B) CONFIGURATIONS TESTED BY COOK (e = 2W)

Figure 5,11 Spanwise Control Gops

However, we have to note that this formula does not reflect any variation with wing
< and hence cannot properly account for variations in the flow through the gap. Also
the data used were predominantly for slotted flaps where the gap entry contours can be
carefully designed to minimize drag effects for zero control angle and the flow through
can be blocked by an upper surface shroud. We can therefore expect this formula to be
somewhat optimistiv when compared with results for ordinary controls where the geometry
is more limited by the need to operate the control effectively in both directions from

the zero setting.

Cook (Reference 5.4) has tested a number of two dimensional control configurations
illustrated in Figure 5.11 for a range of Reynolds numbers up to 15 x 105 ana a Mach
nunber of 0.665. The wing section was the 2815 section (t/c = 0.14). His results
showed little effect of Reynolds number on the drag increment and they also illustrated
the fact that the control gaps produced significant changes in the pressure distribution
over the whole of the wing surface resulting in a small reduction in lift at a given
incidence. The Jdrag increments due to the gaps also showed a variation proportional to
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(gap widfh)a/s. Cook then argued that the mass flow through the gap can be expected to
be approximately a function of es/lg where lq is the 1length of the gap passage from
entry 0 exit. This is based on the theoretical result for the flow through a channel
of length Jg with an applied pressure difference. Hence, Cook argued that
A Ch (1qcz/w3)1/5 should be a function of ("pLS - CpUS) whera oLs is the pressure
coefficient on the lower surface at the position of the gap and chS is that on the
uppar surface. Also v is a single gap width and corresponds to e/2. His resulting plot
is shown in figure 5,12 for the three types of confiquration that he tested and it will
be seen that a reasonable collapse of the data resulted for each type, with types A, B,
C and D collapsing close to a common curve, Not surprisingly, E with its sharp edges at
entry and exit results in & curve departing from the others at the higher values of the
pressure difference, The value indicated for the A, B, C and D configurations with zero
pressure difference was deduced from measurements made with the gap blocked internally
so that thcre was no flew through it and the dashed part of the curve is an inferred
extrapolation.

0,02
E ./

f. 2 ‘/5 }ﬂl B
AC ( 9 ) 0.0} —_ !
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w3, HSA
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“NPOSSIBLE TREND FOR A,B,C,D
0 1 1
0.1 0.2 0.3 0.4

Cors ™ Spus

Figure 5,12 Cook's Analysis of Spenwise Control Gap Drag

Some wind tunnel data have been obtained on a model of the outer panel of the HS125
wing tested with a variety of ailerons, both internally balanced and with round noses,
and with a range of gap widths. These data have been similarly analyzed in terms of the
presenitation of Figure 5.12. Such an analysis is inevitably approximate as quantities
such as lg are Gifficult to define, let alone measure, for internally balanced contrals;
fortunately the presentation is relatively insensitive to lg. It is also difficult to
determine gap width with adequate precision if it varies considerably throughout the gap
passage as with the round nosed ailerons tested. For what they are worth the results
are indicated in Figuvre 5,12 by the vertical lines showing the range of values obtained
corresponding to Gy, = 0,1 and 0.4. The upper end of each vertical line corresponds to
the round nosed ailerons, whilst the lower end corresponds to the internally balanced
ailerons., It seems that for preliminary prediction purposes Figure 5.12 could b~ used
to provide a rough guide to the values ofA(%)(based on control span x local wing chord)

to be expected for the spanwise gaps associated with trailing edge controls at zero
setting.

Hoerner also presents some results for longitudinal slots in the form of drag
coefficient increments based on slot plan area (width % length). For a slot alongside a
moving trailing edge control he quotes an increment so based of 0,5, as compared with a
slot alongside a leading edge control for which the increment is 1.5. Cook tested some
trailing edge control longitudinal gaps and on the same basis his drag coefficient

increment was about 0.3 and was practically independent of Cy, up to < = 0.6.
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Finally, we must note the observation of Hoerner that when the conitour of a
trailing edge control was slightly proud of the wing surface ahead some veduction of the
spanwise gap drag occurred. this reduction was about 40% for cach surface for a value
of Ah/t = 0,15, where Ah = maximur height of the control contour above the local wing
contour and t = thickness of the control. A negative value of A h results in an even
more dramatic increase of the drag increment, These results need further investigation
before they can be generally accepted.

5.5 Prediction Methods for Digtributed Roughness

We have already briefly described in Section 5.1 methods that have been adopted for
dealing with the draj; effects of igolated ~2xcrescences. For such cases we have seen
that the excrescences can be regarded as equivalent to a local jump in the momentum
thickness with possibly a change in the form parametayr H and the calculation can then

proceed as for a smooth surface. For distributed roughress, however, there are
important changes in the boundary conditions at the surface ard assuciated changes in
the mean velocity distribution and turbulence chavacteristics near the surface due to
the roughness that must be taken into account, How this 1is done depends on the
particular smooth surface wethod that is keing adapted to deal with the rough surface
problem. For integral methods it is clear that the changes in the law of the wall
region due to changes in the skin friction must carry most weight, whilst for
differential methods the changes in local turbulence characteristics must also play a
part depending on the form of method chosen,

An early integral method for incompressible flow was that of Van Driest (Reference
2.7). He argued that roughness would modify his suggested viscous damping factor
F = {1 - exp (—y+/AO)j 50 that the factor would become unity for rougnnesses large
enough to destroy the viscous sub-layer and he inferred from Nikuradse's experiments as
well as Laufer's neasurements (Reference 5.20) that this condition corresponded to fully
developed roughness flow (ks+ >~ 60). Accepting the value 26 for the corstant Ao he
therefore postulated that for a rough surface

F=1-exp(-y /26) + exp (60y " /26K ) for 0 ¢ K <60 5(6)

where ks is the equivalent sand roughness height. He deduced from this and the momentum
+
integral equation a law of the wall relation hetween ot vy, and k"+. Fov ks+ > 60 hno
=1

argued on dimensional grounds and the available experimental data, as in Section 3.2,
that

u+=cmuh+ -%Jn(w&&.

We remind the reader that u' = u/qr, y+ = yuT/v, kY - qu/v, etc,

He deduced for pipe flow with the walls smooth that

1/2 1
l/(cfm) /. =-0.39 +4.08 log, , (R S /2),

;!

e

s i

e,



whereas Prandtl's formula (Reference 5.21) based on Nikuradse's experiments is

l/(cfm)‘/2 = 0.4+ 4log o (R_ cfm‘/z) .

With the walls rough enough for fully developed rough flow he similarly deduced that

/(= )'/2=3.64+4.oa logyq (@ A). 5(7)

fn 10 s
We can compare this to the best fit to the available data
1/2 + 0+
= +

l/(cfm) 3.48 +4log)o (e’ /K ). 5(8)
Hece Cfm is the skin friction coefficient based on the mean velocity and Ry is the
Reynolds number based on the mean velocity and the pipe diameter (2a).

Similarly he was able to determine, using 5(6), the local skin friction coefficient
as a function of Rm and ks for the intermediate regime (i.e. ks+=g 60), but the results
do not lend themselves %o any simple analytic formulation. It will be noted that he did
not consider any form of roughness other than Nikuradse's sand roughness.

Subsequently Dvorak (Reference 5,22) directed his attention to the problem of a

surface with any general form of distributed roughness large enough for fully Qeveloped
roughness flow in a non-uniform pressure distribution. We have from equation 3(18)

|2 * *
(Z/Cfe) / =Aln(s ue/\,)+B+2AU -Au/uT+A|n(5 u‘r/a ue).

But from equation 3(19) we can deduce that

5 U /5* Yy = 1/A (1 + 1) = function of the Clauser parameter G, only,
T

and so we can write

@) A=A (s u /)4 Cmput 59)

I'4

¥ . i
wihcre C = B + 2A + A.ln (bu’r/ﬁ ue) and is also a function of G only, and Aut =A "'/“1"
For zero pressure gradient G = 6.7 and C = 4.8,

Also we have equation 3(15) for fully dev~loped roughness flow

Au+=A|nk++D

i
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where D is a function of the roughness gcometry and spacing ( =~-2.73 for Nikuradse's
sand roughness).

:
t
|

Dvorak chose to deal with the effect of pressure gradient by treating C as the sum of
its zero pressure gradient value Co' say, plus o term Au2+ = Auz/uT representing the

effect of the pressure gradient (and hence a function of G) on the right hand side of
equation 5(9). Thus, he wrote

e

+ +
(2/%)1/2 =Aln (5 AR FEMERY 5(10)

P I B LRI

and he deduced from experimental data that

] : auy =1.253(C -6.7) for G > 6.7 (adverse pressure grodient) 5(11)

= 0,404 (G - 6.7) for G £ 6.7 (favorable pressure gradient).

T

He adopted Head's entrainment relation (Reference 2.13), which he assumed was
unchanged by surface roughness since the latter has no effect on the cuter region of the
boundary layer which c¢ontrols the entrainment rate. This relation combined with
3 equations 5(10) and 3(15) enahled him to solve the momentum intecral equation for any
given sand Yroughness 1n any prescribed pressure distribution, To determine the
equivalent sand roughness for a giver roughness of a different kind he used a
‘ correlation based on Betterman's data (Reference 3.7) for Au+ as a function of A (=

: total surface area/roughness area) a correlation that was later improved upon by Grabow
and White (Reference 3.16) as reproduced 1in Figure 3.10, Dvorak compared the
predictions of his method with available experimental data and on the whole found
satisfactory agreement.

More recently Blanchard (Reference 3.8) has developed a number of different
methods, both integral and differential, and compared their predictions with
experimental data and assessed their relative merits,

' His integral method is an extension of a method developed by Houdeville and

: Cousteix (Reference %,23) for smooth surfaces and is similar to that of Dvorak insofar

as it involves equation 5(9), the momentum integral equation and the Head entrainment

equation. However, he has used a system of similar solutions providing a uni-parametric

set of velocity profiles with the Clauser parameter G as the characteristic parameter,

and hence he has determined C, 8 *, and # as functi as of G. He has also made use of the

: Grabow-White correlation (Figure 3,10) to determine the equivalent sand roughness for X
any given roughness. However, since the concept of an equivalent sand roughness applies
strictly to the fully developed roughness regime but not to the intermediate regime,

Blanchard developed an empirical set of relations for the latter as follows:-

For sand roughness Aus+ 0,(x* <5.32)

22 (xH% Y - 26,(5.32 < x*< 69,)

0.4]

1}

n k" - 2,73, {69 < x*.)

!
;
H
i
H
I3
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For the given roughness for which the egqguivalent sand roughness height = X/« ,

calculate Aus+ for ks+ - k+,

then Aut = Aus+ - (a/0.41).1n «

where a = 1 - exp { -(Aus+/3.5 )21.

This brief description of Blanchard's integral method applies strictly to
incompressible flow. For compressible flow he made use of a series of transformations
which formally reduce the basic three equations to forms similar to their incompressible
form. In addition the energy equation is introduced and so the heat transfer at the
surface is determined along with the other boundary layer quantities given the
appropriate initial conditions.

The differential methods considered by Blanchard can be briefly summarized as

follows:-
a) <1he use of the mixing length concept for closure of the momentum and energy
equations, Here a method previously developed for smooth surfaces by Quemard and

Archambaud (Reference 2.29) was adapted to deal with rough surfaces by assuming a non-
zero mixing length at the surface empirically related to the roughness.

b) The use of the transport equations for the kinetic energy of the turbulence
(kt) and the turbulence dissipation (e¢) with associated closure assumptions (see Section
2,1.4) in addition to the mean momentum and energy egquations. This is essentially the
method developed by Jones and Launder (Reference 2.20) for smooth surfaces but with
assumed non-zero values of k. and ¢ at the surface related empirically to the roughness.
A modification of this method (the so-called 'mixed method') employs the concept of the
mixing length in a thin layer adjacent to the surface, The outer boundary of this layer
is assumed to be where the Van Driest damping factor F = 0.99 and the starting values
for kt and e for the rest of the boundary layer are determined there.

c) There is an assumption involved in a) and b) above of a fictional surface with
non-zero turbulence characteristics. Blanchard examlned an alternative approach and
introduced into the momentum eguation a drag term calculated directly from a suitably
simplified form of the geometry of the roughnesses coupled with empivical data. This
concert was used by Finson {(Relerence 5.24) who also added associated terms in the kt
and ¢ transport equations but found their effect negligible compared with the direct
drag contribution.

All the above methods were extended by Blanchard to deal with transpiration at the
surface by the use of the velocity transformation first introduced by Stevenson

{Reference 5.25) which leaves the basic relations unchanged in form.

For the mixing length method a) the mixing length I near the surface was taken to
be cf the form

L =(y/A) L _ exp(y/ACL,)

so that at the surface (y = 0) ! = 43. The constant C was chosen to yield agreement
with Nikuradse's experiments and was determined thus as 1,5, Van Driest's damping

function was retained in the form +
F=1-exp(=~-2 /10.66),

+
with = =7 +Tt=[Lau/ay+pF2 12 (3u/uy)2 ,and & =tu /vy,
1 T
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so that at the surface

+
Fo“‘ﬂ(P('l,Q /10.66).

Blanchard found that the corresponding ratio at the surface of the turbulent to viscous

stress (‘l‘t/‘r‘ )o can be related to the equivalent sand roughness height for fully

developed roughness flow by

_ +
(Tt/Tl)U = 0,024 kS + 0,25

and it is related to £o+ by
F L+=('r /T )]/2 i+1 /7)) ]1/2 =(r. /1)) +05
o o p/ T T t’ 1’0 A N g T

For the intermediate regime ( ks+ < 90) he suggested an empirical relation

+
Fo{‘o =D(a) [ (k/.(,o)-4], with D (o) given by

log (D = 1.89a VB g,

Corresponding to equation 2(23) for the variation of the miaing length over the boundary
layer thickness he adopted the relation

- K Y 4o exo [-K v |
/5 =0.085 tanh ( —5—szz— P [1.5“,0/6) 5 J

For the transport equations method b) a scale length (L)
introduced such that L = th3/2/(, u = ktl/z/c, where C = (2a1)3/2 and a) ~ (0,15 (as for
a smooth surface). Then the boundar’y values kto and €

derived from

and scale velocity (U) are

o at the fictional surface are

+ 2 _ + 2 + _ 4 4 +.3, 4+
Ko “kio /9, (U, e =ev/u =CTU) T/ L,

+ + Cos +
where U " and L = ave empirically related to k = = kgu /v by

+ + +
= = - - 3y -
U, =U,/u_=1 [\ exp (-L_ /3.3,] and L =L v /y

=0.35 (ks)]/2 .
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Blanchard fivst compared the predictions of the differential methods a) and b) above
with the results of his own caperiments in incompressible flow involving abrasive paper
(k = 0,6mm) in zero pressure gcadient, Some of his comparisons are sthown in Figure 5.13
ané 5.14 and it will be seen that there is Jittle difference between the predictions of
the methods but the mixing length method shows closest agrecment with the experimental
results and is the simplest of the ditferential methods., The same conclusion emerged
from comparisons with the results of tests on a porous surface with transpiration. The
predictions of method ¢) proved somewhat less satisfactory than those of the other
methods particularly with vegard to the skin friction at the surface.

The integral method can be used for predicting integral guantities only but its
predictions proved to be as veliable as those of the mixing length method, as is evident
in Figure %.15. Further comparisons including the casc of a moderate adverse pressure
gradient confirmed the general reliability of the mixing length method (see Figure
5.16). The predictions of the compressible flow form of the method were compared with
the vesults of F.L. Young's experiments at a Mach number of about 5 and varicus
conditions of heat transfer for smooth and rough surfaces in zero pressurc gradient,
Retevence 5.26. Here the roughnesses took the form of regular transverse ridges of
triangular section and a range of roughness height were tested, Some of the comparisons
are shown in Figure 5,17 and 5.18 for the displacement and momentum thicknesses, the
'incompressible' form factor H;, the skin friction coefficient and Reynolds analogy
factor as functions of the vatio of wall temperature to ambient temperature., Although
the agreement between predictions and experiment is far from perfect it is fairly
satisfactory bearing in mind the experimental difficulties as well as the usual level of
agreement found for smooth surfaces for such Mach numbers between existing theories and
experiment. However, the integral method gave predictions that were not significantly
worse (see Figure 5,19).

It seems recasonable to conclude frow these comparisons that of the differential
methods considered the relative simplicity and general reliability of the mixing length
method makes it the most readily commendable for predicting the effects of distributed
roughness on boundary layer characteristics. The even greater simplicity and comparable
reliability of the integral methad makes it the preferred one for the many engineering

applications where only integral quantities are needed.
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6. DRAG OF AUXILIARY INLETS AND QUTLETS

6.1 Introduction

A naignificant source of drag for contemporary aircraft is tne influx and efflux of

air, intentional and unintentional, through orifices other than those used for the

" propulsion system. Auxiliary air systems are used for cooling people, equipment, and

oil; and wo provide aivr for combustion to auxiliary power units, Most of this

auxiliary air fiow iy controlled, but a small percentage flows through leaks., For that

portion which is controlicd the designer has many »ptions in configuring both external
and internal geomet-y to winimize drag.

A flight line survey of 12 contempurary aircraft revealed that auxiliary inlet and
outlet designs provide more opportunity for exercise of individual "design license" than
perhaps any other part of the aircraft. A total of 22 inlets and 42 outlets were found
on these ajrcraft - and no twe configurations were exactly alike. Nevertheless, there
are some general classifications into which these auxiliary inlet and outlets may be
placed, anao drag data are available to at least guide the designer if his geometry
approximates some standard in these various classifications. Figures 6.1 and 6,2
illustrate the many auxiliary inlet and outlet designs observed and show the general
classifications into which they will be grouped for discussion,
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Figure 6.2 Auxiliary Outlets Observed in 12-Airplane Somple

In general, auxiliary air system flow requirements vary considerably over the aircraft's
operating environment. One of the simplest examples is that of an air intake and
exhaust system for cooling the cabin of a light aircraft. At low altitudes, low speeds,
and in warm weather, the system is operated at maximum capacity; but a change in
altitude, speed, or weather can completely eliminate the need for such a system and
c mehow it must be shut off, Therefore, most auxiliary airflow systems operate, in one
way or ancother, with variable geometry. This variable geometry may be part of the inlet
or outlet hardware, or it may result from a change in internal resistance, In any case,
this variable feature of auxiliary air systems further complicates the generalizaticon of

drag data for such systems.
In this section, we shall deal primarily with external drag associated with
auxiliary inlets,
auxiliary outlets, and
uncontrolled leakage.

Internal flow momentum losses have been treated in a number of works and are not
considered within the scope of this texct. However, in designing auxiliary inlets and
outlets for winimum drag, several points should be recognized. First, the total drag of
an auxiliary air system is made up of two basic parts - external drag and internal drag.
Every bit of momentun extracted from the air flowing past a vehicle results in drag
whether that momentum is extracted by the air's flowing around a protuberance or from
the zir's doing work inside a cooling system, Taking avoard more air than is needed in
cruise flight will probably increase vehicle drag even if the inlet drayg, for instance,
is negligible. The designer therefore needs to give careful consideration to the total

auxiliary air system to minimize aircraft drag.

2
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6.2 Auxiliary Inlets

Figure 6.1 shows the many types of auxiliary inlets observed on Jjust a dozen
contemporary aircraft, For the purpose of classification these inlets are divided into
the following categories.

Submerged inlet - A submerged inlet is defined as one with special contours on the

ramps, side walls, or lips but with none of these sgpecial contours protruding into the
mainstream, An exception is the submerged inlet with boundary layer diverters which do
extend above the aircraft surface,

Flush inlet - a flush inlet is generally a hole in the aircraft surface with little
attempt made to guide flow into the hole other than corner rounding. These inlets on
wing leading edges and other high pressure regions can be gquite effective,

Protruding inlet - As the name implies, a protruding inlet extends from the
aircraft surface into the mainstream and thus enjoys the advantage and/or disadvantage
of exposure to full impact pressure.

Performance characteristics of these inlets are discussed in the following section.
The net drag of an inlet depends on a combination of external and internal drag, so that

inlet pressure recovery is an important aspect of drag. This is often taken into

account through the use of C a drag coefficient which is obtained from:

Dcorr
Measured Drag minus available thrust of inducted air
divided by inlet area and local dynamic pressure

There are many reports providing data on auxiliary inlets. Unfortunately the
investigations reported covered a wide range of configuration and test condition
variables so that it is difficult to arrive at general conclusiong concerning the "best"
inlet type. Reference 6.1 is one of the better sources of comparison data since both
drag and pressure recovery were measured for all three general classes (protruding,
flush, and submerged) of inlets. All of the lip contours had sharp edges however, so
they do not necessarily represent optimized configurations for subsonic flow.
Therefore, some of the conclusions which may be drawn in comparing inlet types might be
changed if different lip shapes were used.

Figure 6.3 shows data from Reference 6.1 comparing CDcorr for a parallel wall flush
inlet, a curved diverging wall submerged inlet, and an aspect ratio 4 scoop inlet,

For this comparison the best inlet in each of the three categories was chosen.
(This results in comparison of an aspect ratio of 1 for the flush inlets with aspect
ratios of 4 for the submerged and scoop inlets.) In the mid-range oif mass flow ratiaos
there is not much difference in performance of the three inlets except at M = 0.55 where
the scoop inlet had a higher drag than the other two. This resulted from the fact that
while the scoop had higher external drag than the flush inlets it did not attain higher

internal pressure recoveries.

It would be Gifficult from Figure 6.3 to say that any one of the inlet types shown
is universally better than the others, Choice of inlet type must be based on specific

application. More detail on the several inlet types is given in the following sections.
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6.2.1 Protruding Inlets

Protruding or scoop inlets are widely used on contemporary aircrart. Figure 6.1
shows that more scoop inlets were found in the l2-aircraft sample than any other type.

Scoop inlets are characterized by high pressure recovery and sometimes by high drag,
Drag can be minimized however by:

o contouring the forebody to conform to good nacelle design practice,
0 using rounded inlet lips (for subsonic speeds), and
o fairing the downstream side of the scoop with a good afterbody shape

Figure 6.4 shows zero-flow drag, cDo, based on inlet area and free-stream dynamic

pressure, for two scoop geometries over a range of Mach numbers.
aspect ratio 4 scoop has less than 1/2 the drag of a circuiar scoop,

The two-dimensional

Contouring the forebody was shown in Reference 6,2 to reduce zero flow drag for a
semi-circular scoop by 50 percent at subsonic speeds,

Details are shown in Figure 6.5,

With inlet lip contouring and afterbody fairing it is estimated that zerc flow drag

could be further reduced to CDo values ranging from 0.1 to 0.2,
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In areas where the aircraft boundary layer is thick, inlet flow and pressure
recovery may be significantly impaired unless steps are taken to move the inlet out of
the boundary layer. Usually this is done for scoops by mounting the inlet on what
amounts Lo a short pylon. This mounting however results in a significant drag increase,
at the least proportional to the frontal area increase of the installation,

To this point all of the data and comments presented have concerned inlet drag for
the =zero-flow condition. Increasing inlet flow ratio reduces extcrnal drag
significantly. This can be seen by the curves of Figure 6.6 where Cocorr is plotted as
a function of mass flow ratio. Cheorr is determined from the net drag less the momentum
of the internal flow captured by the inlet, The actual drag experienced will of course
depend on what happens to the internal flow - how efficiently it is diffused so that
dynamic pressure is converted to static pressure, Nevertheless Cpeorr is a good overall
measure of inlet performance since it considers both external drag and pressure losses

to the inlet measuring station.
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6.2.2 Subnerged Inlets

Submerged inlets can be subdivided, according to wall shape, ‘nto the categories -
parallel walls, diverging walls, and curved diverging walls., In addition, various
boundarv layer controul devices - bypasses and diverters - are sometimes used. Dynamic
pressure recovery, which is a significant internal drag consideration, is shown for
these thr=e types of submerged inlets in Figure 6.7. The advantage of diverging the
walls can be easily seen in Figure 6,7 and the udvantage of adding curvature to the
divergencc is alse cbvious. The divergence tends to part the boundary layer and turn
more of the higher momentum freestream aiv into tne inlet than can be aone with parallel
walls,

Net inlet drag will be a cocmbination of internal und exiernal drag but sometimes it
is helpful to separate these elements, A measure of external drag is the zero flow drag

as shown in Figure 6.8. This figure shows erternal drag to be lower for parallel walls
than for diverging walls - a fact which tends to offset the pressure recovery advantage
of the c¢uwrved diverging wall inlet. Figure 6.8 also shows however that approach ramp
angle h. a greater impact on zero flow drag than wall contour. f%he 7° approcach ramp

causes the freestream flow to turn into the inlet with the result that drag is in-
creased.

A comparison of curved diverging wall and parallel wall submerged inlets in the
form of Cp. i is shown in Figure 6.9. At M = 0.55 and M = 1.3 the curved 4diverging
wall inlet is gener:lly better than the parallel wall inlet, but there may be an

advantage for the parallel wall inlet in the transonic (M = .9) range.
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Inlet inclination angle has a large effect on submerged inlet drag. This is shown
for parallel wall inlets of aspect ratio 4 in Figure 6.10. Most of the large effect
shown can probably be attributed to the boundary layer's inability to negotiate turns
greater than about 157, Thus the inlet pressure recovery falls off drastically as the
inclination angle, § , is increased. By the same token, boundary laye: separation at

zero inlet flow causes C to be guite low at valucs of 6 greater than 450, since the

freestream flow feels 11'.Dtctolrer incliination to turn into the inlet cavity. An auxiliary
air system with large flow demand under static conditions and zero or small demand at
cruise might well use a submerged or flush inlet with large inclination angle. inlet
ramp angle is an important parameter and from experimental data should not exceed 10° as

indicated by Reference 6,13,

Ahenevecr the boundary layer thickness dimension is significant relative to inlet
height or depth, the effect of boundary layer on inlet drag and performance should be
considered, For a protruding inlet the impact on external drag will generally be
through a reduction in the effective dynamic pressure used to compute drag, and the im-
pazt on interral drag will be through a reduction in total pressure recovery becausc the
boundary layer entering the inlet has less momentum than freestream air. For a sub-
meraed inlct a thick approaching boundary layer may separate from the inlet ramp at
angles which a thinner boundary layer might easily tolerate - thus compounding the
boundary laye. effect,
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For situations where boundary layer separation is not a factor, charts of boundary
(Reference 6.3 for instance) to expedite pre~

layer mass and momentum are available

diction of boundary layer effects.

Experimental data on boundary layer effects on submerged inlet performance are

6,11 where the effect of boundavry layer

limited. Some are shown however in Figur~
inlet with curved

recovery has been plotted for a submerged
the already low pressure recovery is
= 0.4

thickness on pressure

diverging walls. At high inlet velocity ratios,
severely impaired by a doubling of boundary layer thickness while at Vi/vo

doubling the boundary layer thickness reduces pressure reccvery about 15 percent,

along the edges of the

Boundary layer deflectors which extend above the surfeice
This is shown

submerged inlet valls can reduce pressure losses due to bgundary layer.
= 0.4, an increase in

Although drag was not
it should be expected

by the broken line curve in Figure 6.1l which shows, at V,./v0
pressure recovery of 10-15 percent through the use of deflectors,

measured in the investigation from which these data were obtained,

that the increase in pressure recovery will be accompanied bv an increase in extewnal

drag, so the net gein or loss in LDcorr is not known.
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Figure 6,11 Effect of Boundary Layer Thickness or Suhmerged Inle: Pressure Recovery (Reference 6,7)

6.,2.3 Flush Inlets

Flush inlets. if used for in-flight air induction must be located in regions of
high static pressure since these inlets employ no ramps or other special air turning
devices. They are sometimes used however to supply air to systems which operate only on
the ground. 1In this case the conczrn from a drag standpoint is that the inlet hole be
¢losed in flight, or that flow be completely stopped and the inlet opening be of such
size and shape that drag is negligible.

Reference 6.4 shows that in the subsonic and transonic range th2 no-flow drag
coefficient for sharp-edged 90° flush openings of aspect ratio 4 is about CD = 0,03,
Figure 6.12 from Reference 6.5 shows the effect of aspect vatio, w/d, on flush opening
drag at M = 3.25, The drag coefficients vary from ,015 to .03 in the range of moderate
aspect ratios. Here CD is the drag increase due to the inlet divided by free stream
dynamic pressure and inlet area,

mi/m0 w0

Ql i 1 1 ————— 1 —

ASPECT RATIO

Figure 6,12 Drog of Flush Rectangular Openings ot M = 3,25, Zero~Flow Conditions (Reference 6.5)
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For those applications where flush inlets are located in regions of high static
for instance - inlet design should follow the

pressure - on the leading edge of wings,
It is possible

guidelines established for nacelles and primary air induction systems.
to optimize such inlets for cssentially zero drag in cruise. The reader is referred to

such standard guidelines as Reference 6.6,

6,3 Auxiliary Outlets

Auxiliary air exhausted into the mainstream can produce drag or thrust. it can

also interact with the boundary layer or other parts of the aircraft so that its effects

are magnified, Wormally, the outlet air is exhausted aft and the dragq is

D=-T= ™, Ve cos g 6(1)

and for incompressible flow, the outlet drag coefficient based on exit area

Ve D
CD='2 {-v—-} cos g = A 6(2)

If the exhaust

tne angle of the exhaust flow relative to the freestream.
If it were

where € is
flow wore directed forward, there would be ar egqual amount of positive drag.
exhausted normal to the freestream, there would be ideally no drag or thrust,

Boundary layer and other interactions can be favorable or unfavorable. In some

cases outlet flow may cause the boundary layer to separate,
boundery layer may be energized by the outlet flow for a significant drag reduction. The

designer should take all these factors into consideration when assessing outlet drag.

whilie in other cases the

As was the case for inlets, auxiliary outlets can also be divided into the general
and submerged outlets, When liguids (fuel, etc.) are

categories of protruding, flush,
there is generally the reguirement that the liguid

to be discharged into an airstream,
should not wet the adjacent surfaces,
that vents and drains will be considered herein as a sepavate category of protruding

This requirement demands special treatment so

outlets.

6.3.1 Protruding Qutlets

Protruding outlets can be designed to generate Jlow pressures and thus enhance

outlet flow, They also are generally designec .o direct the discharge downstream and

thus generate thrust. In designing a protruding outlet, the following variables are

important.

1. Area of the outlet (which together with the weight flow, W specifies the flow
ratic we/(P e VO Ae), where the subscript e denotes exit conditions,

2. Aspect ratio of the outlet, AF'

3. Flap angle, 6?' or some other measure of the protrusion.
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Reference 6.8 reports an extensive experimental investigation for a vrange of
flapped outlet variables. While it is a good source of specific and detailed design
information, it can be used also for some general observation and conclusions. Figure
6.13 shows the configuration tested and defines some of the geometric variables,

OQUTLET AREA BASED
ON MINIMUM DISTANCE

Figure 6,13 Flapped Qutlet Test Geomeiry (Reference 6 .8)

Figure 6.14 shows the drag of flapped outlets as a function of flap angle for zero
outflow, In this case the drag coefficient is essentially the base pressure
coefficient. It can be seen that drag is much lower for AF = 2 than for Ap = 1 outlets.
Conversely, however, the higher drag of the Ap = 1 outlets is accompanied by better
discharge coefficients since the flap suction is higher.

ZERO QUTLET FLOW

L
i

-.4
=10 0 10 6 20 30 40

Figure .14 Drag of Flupped Outlets ~ Zero Outlet Flow (Reference 6.8)

The airflow required for zero drag is shown in Figure 6.15 as a function of flap
angle. Here again, the Ap = 2 flaps show in a better light since mass flow can be
reduced to values about half those for Ap = 1 before drag is experienced. in a
situation favoring fixecd flap angles, these data show that an aspect ratio greater than

1 is desirakle,
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THRUST

FLAP ANGLE, &

Figure 6.15 Mass Flow for Zero Drag - Flapped Outlets (Reference 6 .8)

The data in Figure 6.16 show the apparent thrust (measured thrust minus zero-flow
thrust) coefficient for Ap = 1 flaps. Also shown is the ideal thrust of the outlet air

6(3)

Two things are significant about the curves of Figure 6,16. First it can be seen
that BF has a second order effect only. As a first approximation it can be assumed that
all of the outlet thrust is recovered - not just the horizontal (or cosine § F)
component, Such an assumption could result in a maximum error in thrust coefficient of
about 30 percent at M = 0.4 and much smalier errors at high speed. Secondly, the
calculated or ideal thrust matches well the measured values at significant levels of
JACT. These observations lead to the conclusion that for flap angles up to 30°’ the
thrust for a flapped outlet is equal to the zero flow thrust (or drag) plus the ideal
outlet flow thrust., Thus a reasonable approximation of the thrust or drag of a flapped
outlet can be obtained by adding the thrust of the outlet flow to the drag for the zero
flow condition which can be obtained from Figure .14,

6.3.2 Flush Outlets

Flush outlets with zero outflow usualiy have zero drag. Exceptions arise for some
peculiar shapes and at transonic and supersonic Mach numbers. A long narrow flush
outlet with its major axis alined with the flow will have positive drag at subsonic
speeds, In Figure ©.17 data at Mach 3.25 (Reference 6.5) showed all flush outlets to
have positive drag at this Mach number. Drag coefficients ranged from about 0.015 at
moderate aspect ratios (0.5 to 2.0) up to several times that value at lower and higher
aspect ratios,

Wren flow is added to a flush outlet a thrust is obtained unless the flcw is
directed upstream. Flush outlets can be divided into two classes - ducted outlets and
thin plate outlets -~ and the drag or thrust characteristics are different for each
class. Typical configurations for the two classes are shown in Figure 6,18. For ducted
cutlets the orientation of the duct sets the ocutlet inclination angle § while in thin
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plate outlets the initial direction of the outlet Jjet is perpendicular to the
mainstream. Nevertheless, there may be some thrust obtained from the thin plate outlets
if the aspect ratio is in the range from about 1 to 4,

For ducted outlets with § < 30° the thrust obtained is, to a first approximation,
equivalent to the jet thrust, At higher inclination angles thrust will generally be
greater than T cos f# but less than T, This can be seen in Figures 6.19(a) and 6.19(b)
where thrust coefficients for round ducted outlets at two values of g are shown.

Thrust coefficient decreases with increasing Mach number as shown in Figules
€,20(a) and 6.20(b).
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Figure 6.16 Comparisons of Apparent Thrust Produced by Flopped Outlets with Ideal Values,

AF =1; x/1,= 0 (Reference 6.8)
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Figure 6.17 Thrust Coefficient at Mo Flow for Thin-Piate
Qutiets, M = 3.25 (Reference 6.5)
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Figure .20 Variation of Thrust Coefficient with Mach Number (Reference 6.5)

6.3.3 Recessed Outlets

Recessed outlets are characterized by a downstream ramp which is recessed below the
aircraft surface. At zero outlet flow recessed outlets will generate a negative base
pressure and consequently a positive drag. They are, like protruding outlets, useful
when needed to aspirate a cavity since the freestream air moving past a recessed outlet
will entrain and help to pump the outlet flow. Outlet pressure coefficients for several
recessed outlets at zero flow are shown 1in PFiqure 6.21. These coefficients are
essentially equal to the no-flow drag coefficients.

If a recessed outlet is designed with a good radius on the downstream ramp
approach, the outflow should exhaust at a small angle relative to the freestream and all
of the exhaust momentum should be recovered as thrust.

6.3.4 Drains

As indicated earlier liquid drains on aircraft fit into a special class of outlets,
In normal flight little outflow is expected, and in cases where there is outflow, drag
is generally not a critical consideration, An important criterion for drains is

generally that the fluid drained should not wet or stain the adjacent surface, and this

usually reguires that the drain protrude into the freestream flow.,
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Figure 6,21 Vent Pressures (Reference 6 .4) for Recessed Outlets

Reference 6.9 reports an extensive investigation on the ability of various drain
contiqurations to discharge fluid into an airstream without surface staining. Circular
and elliptic drains extending normal to the surface always resulted in staining. but the
staining was usually eliminated by sweeping the drain 60°. Airfoil-shaped drains - both
swept and unswept - were successful in preventing staining.

Drag coefficients for the drains investigated in Reference 6.9 are shown in Figure
6.22. Elliptical cross sections had less drag than circular; swept drains had less drag
than unswept; and airfoil shaped drains had the lowest drag. As would be expected, drag
with liquid discharge was always lower than with no discharge. External drag for the
airfoil-shaped drains was low enough so that flow discharge produced negative drag.

6.4 Leakage Drag

Leakage drag in modern day aircraft is significant primarily because passenger (and
often times cargo) compartments are pressurized to maintain tolerable pressure
altitudes. As a result, most contemporary high speed aircraft normally operate with
internal to external pressure differentials of about 8 psia and small manufacturing
defects can result in significant leakage.

Leakage drag also occurs, in a slightly different form, on less sophisticated
aircraft which normally operate without cabin pressurization, In this case some
pressurization may occur when flow leaks into the aircraft in a high pressure region and
leaks out of the aircraft in a low pressure region, If the lcaks are flush with the
surface, all the drag results from internal flow momentum losses unless the leakage so
affects the boundary layer as to cause a significant change in flow pattern.

For conservatism it is generally assumed that leaks exhaust in a direction normal
to tue freestream so that all the momentum is lost, but in some cases the aircraft

structure can be tailored so that leaks exhaust att and some momentum is recovered,
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Figure 6,22 Drag of Drains (Reference 6.9)

6.4.1 Leakage Drag - Non-Pressurized Aircraft

As mentioned earlier, external drag due to leaks can gencrally be neglected since
the leakage inlets and outlets are flucsh with the surface. In this kind of leakage
system air flows f-om the inlet through a duct of some kind thence to the outlet, The
duct may be an open bay in the nacelle or ruselage structure for instance. Hoerner
(Reference 6,10) detines a drag coefficient for this kind of system in terms of an
effective duct cross sectional area Ag in which there is an average velocity w. The
drag coefficient based on Ay is then

CD =2 —%— (where V is freestream velocity). 6(4)
Q mox .

=D/qo Ay

Thisz is an incompressible flow approximation but is probably valid tor those
aircraft where this kind of leakage is significant,




o s T AT TSI S WY

e e

MY (e ot

1558
Patterson (Reference 6.11) has a more detailed treatment of this kind of leakage

drag which takes into accouat whether the skin Jjoints which laak are forward facing,
flush, or rearward facing.

6,4.2 Leakage Drag - Pressurized Aircraft

For those aircraft with pressurized compartments, manufacturing tolerances are
usually tight and leakage areas are small. Nevertheless subsonic aivcraft leakage drag
may Aapproarh about 1 percenv of total drayg. Gyorgyfalvy {(Reference 6.12) reports
results from flight tests of a Beoeing 720 aircraft in which fuselage bcundary layer
measurements were used to determine drag with the passenger cahin pressuriz.d and
unpressurized. He concluded that some additional drag resulted from fuselage bulging
and the effects on s»kin friction, but that most of the 1-1/4 percent drag increase
resulted from leakage.

Figure 6.23 shows a plot of leakage area as a function of pressurized voiume for a
representative group of modern subsonic aircraft. These leakage aveas were dJerived
indirectly from measurements of mass flow reguired to pressurire the aircraft, The data
represent three passenger and three caryo aircraft.
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Figure 6.23 Leakage Areas {or Modern Pressurized Aircraft

Leakage drag can be estimated from the data of Figure &.23 when pressure
differentials are obtained by specifying cruise altitude and cabin aititude. 1If it is
assumed that all of the momentum of the resulting lcakage air is lost, the data of
Figure 6.23 will generally not vyield drag 1levels as high as those reported by
Gyorgyfalvy. This implies that the impact of leakage on boundary layer flow over the
aircraft surface is greater than the leakage air momentum loss effecc,

Another word of caution is in order, In determining drag for large complex
aircreft, bookkeeping ig important. 1f cabin pressurization air is taken from engine
bieed, the airplane's performance may already have bheen charged with lost momenium of
this air v,ich comes through the main propulsion system, In this event the only drag
attributable to leakage will be that duc to the effeccts of leakage on the boundary layer
flow. If this effect should be favorable or if the leaks are such as to direct the air

aft, the leakage momentum could actually result in a drag decrease.
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6.5 sSupplementary Information

The following 1list provides additional sources of information c¢oncerning the
performance of auxiliary and specific designed inlets, However the sources provide no

additional drag information,

Dennard, J. S., "A Transonic Investiyation of the hass~Flow and Pressure Recovery
Characteristics of Several Types of Auxiliary Air Inlets,”™ NACA RM LYTBQG7, 1957,

Frank, J. L., "Pressure Distribution and Ram-Recovery Characteristics of NACA Submerged
Inlets at High Subsonic Speeds," NACA No, RM AS0E02, 1950.

kxelson, J. A., Taylor, R,A., “Preliminery Investigation of <the Transonic
Characteristics of an NACA Submerged Inlet," NACA No. RM AS50C13, 1950.

Anderson, W, &., Frazer, A, C,, "Investigation of an HNACA Submerged Inlet at Mach
Numbers from 1,17 to 1.99" NACA RM No. AR2F17, 1952,

Simon, P, C., "Internal Performance of a Series of Circular Auxiliary Air Inlets
Inmersed In A Turbulent Boundary Layer, Mach Number Range 1.5 to 2.0 NACA RM ES54L03,

1955,

Sacks, A. H., Spreiter, J. R., "Theoretical Investigation of Submerged Inlets at Slow
Speeds," NACA TN 2323, 1951.

Weinstein, M. I.,, "Performance of Supersonic Scoop Inlets," NACA RM ES2A22, 1952,

Boswinkle, R, W., Mitchell, M. H., "Expelimental Investigation of Internal-Flow
Characterisrics of Forward Underslung Fuselage Scoops with Unswept and Sweptback
Entrances at Mach Numbers of 1.41 to 1.96," NACA RM L%2A24, 1952,

Blackaby, J. R., Watson, E. C., "An Experimental Investigation at Low Speeds of the
Effect of Lip Shape on the Drag and Pressure Recovery of a Nose Inlet in a Body of
Revolution,” NACA TN3170, 1954.

Santman, D. M., "Transonic Performance of a Mach 2,65 Auxiliary Flow Axisymmetric
Inlet,"” NASA CR-2747, 1976.

Dewey, P. E., "A Preliminar7 Investigation of Aevrodynamic Characteristics of Small
Inclined Air Outlets at Transonic Mach Numbers," NACA TN 3442, 1935.

Dewey, P, E., WNelson, W. J., "A Transonic Investigation of the Aerodynamic
Characteristics of Plate and Bell Type Outlets for Auxiliary Air,"™ NACA RM L52H20, 1952,

Rogallo, F. M., "Wind Tunnel Investigation of Air Inlet and Outlet Openings for
Aircraft,™ NACA MISC 133,
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7. CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE RESEARCH

We have endeavoured in the foregoing to present to the reader the current 'state of
the art' of the subject of excrescense and aircraft drag. We have demonstrxaced the
importance of the subject, and as far as possible presented the available information in
a way that is readily usable for prediciion and design purposes. 1In particular, we have
tried to make it possible for designers to assess realistically the overall net gains
that can result from striving for cleanness after allowance fcr possible extra costs in
design effort and weight that may be involved.

We have found it convenient to distinguish betwezn distributed roughness, generally
of a scale small in relation to the boundary layer thickness so that the effects are
dominated by flow conditions close to the surface, and discrete excrescences where the
scale can be much larger and for which main stream flow conditions can be dominant. We
have shown how existing methods of predicting the development of turbulent boundary
layers on smooth surfaces can be adapted to deal with both distributed and discrete
excrescences and the importance of the so-called magnification factors associated with
typical pressure distributions over the surface.

It will be evident, however, that a nunber of important gaps remain in our
knowledge where the available information is inadequate for our purpose. The situation
is reasonably satisfactory as far as those cases are concerned where two-dimensional
data can be adapted with some measure of confidence to provide the answers needed e.g.
for aircraft of relatively large aspect ratio and small sweep. With increase of sweep
and reductior of aspect ratio the application of such data becomes increasingly un-
certain, Our first need, therefore, is for systematic experimental data on the effects
of excrescences in three dimensional flows, particularly flows involving large sweep.

Our knowledye of the effects of controls and control gaps as sources of drag is
also deficient and more work is needed on the lines of that of Cook described in Section
5.4 kut with sweep included as an important parameter.

Ancother majur area of uncertainty due to inadequate basic data is the effects of
excrescences on high lift configurations. The importance of these effects goes beyond

the gquestion ot possible reductions of C Any reduction of lift at a given in-

Lmax’
cidence due to excruscences will result in a higher incidence being adopted in order to
maintain the lift with a consequent drag increase additional to that due directly to the
excrescances, Here again sweep 1s aa importan: parameter and we should include as

excrescences slat and flap brackets and tracks,

We have found relatively 1little to say about the effects of excrescences at
transonic speeds and nothing on their possible effects on shock wave-boundary layer
interactions. We know that these interactions can be crucial in determining the overall
perxtormance of an aircraft flying at such speeds, and so we must emphasize the need for
weili planned experiments on possible modifying effects due to excrescences,

Fipally we note a paucity of information on the effects of excrescences at
supersonic speeds, particularly where the excrescences are large enouyh to extend into
the supersonic region of the boundary layer when they may be expected to generate shock
waves additional to those assogiated with a smooth surface.

It is our hope that those responsible for planning experimental aerodynamic
research programs will take careful note of these gaps in our knowledge and will judge
them important enough to warrant a considerable effort directed at filling them.
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